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Disclaimer 
This publication is solely intended for information purposes and does not necessarily represent the 

official opinion of the European Chemicals Agency. The European Chemicals Agency is not responsible 

for the use that may be made of the information contained in this document. 

Abstract 
The present study provides the European Union Observatory of Nanomaterials (EUON) and its 

stakeholders with insight on available frameworks and state-of-the-art (scientific) developments for 

read-across and other in silico approaches, which can be alternatives to conventional nanomaterials 

(NMs) hazard and risk assessments. In the course of this exercise, a systematic literature review was 

planned and carried out to identify the available models and tools for the computational assessment of 

NMs. 

Based on the identified studies, a thorough analysis was performed to map the aspects of models that 

are properly implemented (model development, validation, and documentation), as well as any 

potential data gaps and flaws that could be improved in upcoming research. Next, expert opinions were 

collected and incorporated in the findings to present a complete and integrated view of the 

nanoinformatics field. Finally, the applicability, the strengths and limitations of the models were 

demonstrated through the development of three case studies using as many of the identified tools as 

possible. 

Based on the collected results we concluded that the nanoinformatics field is moving forward, as there 

are already available reliable models and the infrastructure needed to implement them as user-friendly 

tools (e.g., supported by different EU-funded projects). Nonetheless, the main barriers and delays to 

the adoption of the in silico approaches by regulators continue to be the lack of transparency in the 

currently available methodologies (including algorithms, assumptions, validation process, and 

applicability domain definition), and of real-case examples/applications. Building trust in the use of 

appropriately reported and validated computational methods that are also scientifically supported, is 

therefore the next step toward in silico approaches gaining widespread public and regulatory 

acceptance as alternatives to conventional hazard and risk assessments. 
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Executive summary 

Objective 
Upon the request of the European Chemicals Agency (ECHA) and the European Union Observatory of 

Nanomaterials (EUON) NovaMechanics Ltd. has undertaken a project on the identification of valid in 

silico modelling tools (computational models) and read-across approaches, including the creation of 

case studies on read-across for specific (types of) nanomaterials (NMs). 

The purpose of this report is to provide the ECHA/EUON and the interested groups with reliable and 

transparent information on the existing computational approaches for the risk assessment and safety-

by-design (SbD) of novel NMsa. These approaches include nanoQSAR, grouping and read-across 

methods, adverse outcome pathways (AOPs), physiologically-based pharmacokinetic (PBPK) models 

and simulations (see §2). To address this mission, an extensive and systematic literature review was 

conducted to mine the existing tools and methodologies, as well as an online survey to collect the 

experts’ opinion in the field of nanoinformatics. Furthermore, a representative number of the identified 

tools (10 out of 38) was tested to assess their functionalities and how they can be integrated in an SbD 

or in a hazard/risk assessment framework. Finally, a critical analysis of the identified and tested 

methods and tools was performed with the aim to derive meaningful conclusions that will contribute 

to the future development of in silico models for the assessment of hazards and risks of NMs.  

Methodology 
This report was prepared using a step-by-step process to collect the relevant information and give 

EUON and its stakeholders the pertinent insights. For this reason, this project was divided into subtasks: 

1. The structured and systematic literature mining, based on specific criteria of inclusion and 
exclusion of research studies defined in this project.  

2. The critical analysis of the collected data, and the thorough analysis of the identified in silico 
tools and models with specific focus on the project requirements (e.g., data availability and 
their filtering, model validation and statistical evaluation, the definition of the models’ domain 
of applicability, the performance of robustness tests, the mechanistic interpretation of the 
models (e.g., discussion on the causality between a property used within the model as 
independent variable and the toxicity of the studied NMs), the availability of standardised 
reports and the models’ availability as user-friendly applications or web-services). 

3. The identification of experts through the reviewed literature, research consortia, academic and 
industrial associations, and commercial networks to cover different stakeholder groups and the 
conduction of surveys, to collect state-of-the-art information on the available frameworks and 
on the scientific developments for read-across and other in silico approaches as alternatives to 
the testing of NMs. 

4. The development of three case studies as examples for grouping, read-across, and in silico 
models, based on the previously identified studies, to illustrate the state-of-the-art and how 
these grouping, read-across, and/or in silico modelling can be used in SbD approaches or in 
NMs risk assessment.  

5. The synthesis and presentation of the results, based on all acquired data from the previous 
subtasks. This report, therefore, summarises identified gaps, overall conclusions on current 

 
aAccording to the Organisation for Economic Co-operation and Development (OECD) definition, “The SbD (Safe-
by-Design, Safer-by-Design, or Safety-by-Design) concept refers to identifying the risks and uncertainties 
concerning humans and the environment at an early phase of the innovation process so as to minimize 
uncertainties, potential hazard(s) and/or exposure. The SbD approach addresses the safety of the 
material/product and associated processes through the whole life cycle: from the Research and Development 
(R&D) phase to production, use, recycling, and disposal.”253  
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applicability and an outlook on how to drive future developments in the areas of read-across 
and alternative in silico approaches. 

Through the methodology followed in this project we aim to ensure that the results from scientific 

literature and industry reports in the field are collected and analysed in a systematic manner and that 

they are presented in an informative transparent way. By using a comprehensive and standardised 

approach to literature mining these results can be considered as most up to date and relevant in the 

field. Thus, ECHA/EUON and its stakeholders are supplied with timely information on the existing in 

silico methods, and their applicability in NMs hazard and risk assessment applications. 

Results 
The objective of this project was a comprehensive analysis of available computational models and in 

silico methods and tools for hazard and risk assessment of NMs through a systematic literature review, 

interviews with experts in the field and the development of relevant case studies.  

In total 190 models/methodologies were assessed including nanoQSAR, grouping and read-across 

methods, AOPs, PBPK models and simulations. The models were retrieved from peer reviewed scientific 

publications and from the publicly available reports/websites of international programmes and 

research projects. Information was extracted from the publications and reports and was systematically 

collated in a spreadsheet file. Charts are provided -whenever possible- to better capture the key 

findings of the analysis. 

Interviews with relevant experts were conducted via an online survey on the existing read-across and 

other computational methods for the risk assessment or SbD of NMs. The questionnaire of the survey 

was prepared in collaboration with ECHA/EUON based on the findings of the literature search and 

questions were targeted to address as many of the project’s goals as possible. In total 36 experts 

participated in the survey. Their responses were collected, analysed, and compared with the results of 

the literature search. 

The next paragraphs summarise the key findings of the abovementioned analysis, as well as suggesting 

potential actions in order to offer reliable, robust and high-quality models to serve the NMs hazard and 

risk assessment.   

Key findings 

Literature review 

• In their majority (82%) the quality of the assessed models and of their reporting are quite high. 
When evaluating the key model aspects, such as the data pre-processing, the models’ 
validation and interpretation, and the definition of their applicability domains, satisfactory 
results and conclusions were derived.    

• Many efforts have been made in the field of nanoinformatics to develop methods that are 
specifically designed for NM datasets, taking into account the unique characteristics of the NMs 
(the properties of materials at the nanoscale, the NMs dynamic behaviour depending on the 
environment, the data scarcity). In addition, work has been done to develop methodologies 
and algorithms of general use that have been proven to produce reliable predictions even when 
small datasets are used. In fact, these methodologies can be employed to easily create different 
models based on different input datasets, allowing their use in different cases (endpoints, 
properties, or types of NMs) without any need of a grouping hypothesis.  

• Automation and optimization of the in silico methodologies and modelling workflows have also 
been considered, to create models with improved features that converge to optimal grouping 
hypotheses and produce accurate predictions. Furthermore, the advances in artificial 



 
 

8 
 

intelligence (AI) and in machine learning have been integrated in the development of predictive 
in silico workflows. For example, deep learning approaches are already applied in the field of 
computational NM evaluation to extract information from microscopy images and later predict 
physicochemical parameters or possible NMs adverse effects. 

• Progress has been also made in the development of other alternative methods such as 
simulations, PBPK models, and AOPs that unravel the NMs toxicity mechanisms and help to 
understand the NMs exposure routes in different organisms. Such methods greatly contribute 
to the SbD of novel NMs.  

• It has been also proposed that workflows of mutually dependent models which are linked 
through specific properties/descriptors can be created to fill data gaps and reduce the need for 
experimental evaluation/or testing for already existing datasets (structure-activity prediction 
networks-SAPNets). These networks can be constructed from the endpoint to the descriptors 
that describe the NM structure and thus, later they can be integrated in NMs SbD processes as 
they can give enough details on what structural properties need to be changed to produce NMs 
with desired properties.  

• The cornerstone for the development of a predictive model is the data availability, especially 
for nanoQSAR and read-across methodologies that are based on data-driven machine learning 
methods. In this course, input data of low quality (e.g., noisy, incomplete, free of bias, and 
inaccurate data) will inevitably lead to incorrect predictions thus, researchers seek to employ 
datasets that are curated and accepted by the scientific community. Based on the literature 
search results, we observed that even if simpler or more complex modelling methods and 
algorithms have been devised (e.g., incorporating the NMs particularities), due to the general 
nanomaterial data scarcity or datasets unbalance, they are developed and validated on a 
limited number of curated datasets found in literature. Therefore, their ability to estimate 
endpoints of interest in real-case applications is not widely assessed, and this hinders the 
models' regulatory acceptance.  

• Apart from nanoQSARs and read-across models, for PBPK methods the data availability is 
crucial for their validation and consequently their regulatory acceptance because they are 
based on the comparison of modelled outcomes with conventionally retrieved (in vivo and in 
vitro) measurements. The limited data and consequently the limited applicability domains, may 
prevent the timely prediction of the NMs effects on the humans’ health and safety. For 
example, this is the case of computational methodologies that assess the molecular 
mechanisms leading to adverse effects (AOPs), the interaction mechanisms between NMs and 
biomolecules (MD simulations) and the biodistribution of NMs in an organism after exposure 
(PBPK models): The data scarcity may prevent the timely identification of such mechanisms and 
consequently the timely prediction of the NMs toxicity.  

• Again, in the development of SAPNets, meta-data scarcity prevents the development of 
predictive workflows consisting of already existing models, as their training data (the data used 
to build the models/algorithms on and adjust their hyperparameters) may be measured under 
different conditions that are unknown to the stakeholders. A characteristic example is 
presented in this report regarding the use of the NMs zeta potential as a linking property 
between models. The zeta potential is routinely measured during NMs characterisation and is 
linked with their stability in a liquid medium (e.g., it controls NMs tendency to form 
agglomerates) and in general it can regulate the NMs behaviour and functionality1. In this 
course, several models have been developed for the NM zeta potential prediction, that could 
be useful for NMs SbD. The zeta potential depends -among others- on the pH and the 
concentration of the suspension, the temperature, etc. These meta-data are usually not 
available to the modelers or the users. This renders the prediction of zeta potential deficient in 
terms of the conditions where the prediction refers to. It also makes it impossible to use as a 
linking property to combine models under the same predictive workflow. In such cases, it must 
be ensured that in the two combined models the zeta potential will be measured under the 
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same conditions, otherwise, meaningful predictions are not going to be produced. This applies 
for every linking property between models. 

• To ensure the reproducibility of the in silico methods, all the necessary steps, parameters and 
assumptions/approximations should be reported for the model (ideally using a standardised 
template). In many cases, this reporting is missing: a typical example is the lack of 
documentation of the exact NM samples used during model training and validation especially 
when they are selected randomly (in a non-reproducible way) from a pool of available data.    

• Different phases of the same material (different crystal forms) can lead to different extrinsic 
properties. These crystal forms are described through space groups that encode the 
arrangement of a material’s atoms in space and should be provided to characterise the NM in 
study. In addition, in the case that dataset enrichment with molecular descriptors is sought, to 
encode into numerical values the NMs’ structural characteristics, it is not possible to produce 
them if the NM space groups are not known. In many cases in the reviewed publications the 
space groups of the NMs are not available. 

• The use of a standardised reporting template (e.g., QSAR Model Reporting Format-QMRF or 
the Modelling Data-MODA reports) could be a measure to overcome the reproducibility issues, 
however most of the assessed studies did not provide such a report.   

• Model validation is a crucial step during the in silico investigation of NMs, as it evaluates their 
accuracy and suitability for use with real-case data and it contributes to the models’ regulatory 
acceptance. In this course, the use of questionable performance metrics might not accurately 
represent how reliable a model is in practice. For instance, the F1-score which is popular for 
the validation of machine learning classification models and is used to validate many of the 
models collected in this review, has received criticism. In fact, it lacks “symmetry” and varies 
when the positive class is switched with the negative class in the confusion matrix (the values 
of true positive-negative and false positive-negative are also switched) and also may hold 
misleading information when the imbalanced datasets are treated. Its use as a statistical 
measure should be reconsidered or -if used- it should be introduced in a broader scheme of 
multi-fitness criteria. 

• Since there is no one-size-fits-all performance metric for each and every modelling application, 
choosing one over others results in a number of compromises. It is advisable to present a 
variety of metrics (in this review we considered at least four) to obtain a complete and thorough 
validation of the prediction performance to properly assess the quality-of-fit and predictivity of 
a model. Many of the reported models did not include enough statistical measures. 

• To avoid misinterpretations and make meaningful comparisons between models when 
presenting the statistical evaluation of a model, definitions and formulas should be provided 
(e.g., the use of the “R-squared” term should be avoided without providing additional 
information. The definition -coefficient of determination (𝑅2) or squared Pearson’s correlation 
coefficient (𝑟2)- and the respective formula should be also provided. This applies also for the 
formulas of other statistical metrics.  

• The disseminated models (in contrast to the models that are not yet available via a user-friendly 
format) can maximise their utility and serve in the future for the design of sustainable and 
benign NMs. Most of the assessed models can be implemented as user-friendly tools 
considering that the relevant codes and scripts are available through public repositories, 
supplementary files, or equations in the scientific publications. In addition, 38 models and 
methodologies were identified to be already available through a user-friendly environment 
(e.g., as a web-application, a stand-alone tool, etc.). The 38 models were tested and were 
briefly presented within the report. The majority of these tools are simple to use by non-
informatics experts as they use common user-interface (UI) elements. Stakeholders are more 
comfortable to use the tools through menus, buttons, radio-buttons, etc. and they can observe 
the results in tabular format or through automatically produced plots and graphs. The format 
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of the results permits their storage in the users’ computers and their further post-processing; 
thus, it is easy to include them in a future NMs SbD, hazard or risk assessments.   

• Nonetheless, the model’s dissemination as a user-friendly tool should not be considered a 
secondary task when developing a predictive model. Some of the assessed tools present 
weaknesses during their use, such as inconsistent input, impractical user-interface, server 
timeouts, etc. These flaws may prevent stakeholders from using them.  

• The deployment of an in silico model as a software component (e.g., web-application, stand-
alone tool, etc.) requires expertise in the development of Graphical User Interfaces (GUIs), in 
the storing and retrieval of data and information, in server protocols, etc. Modelers and 
computational scientists may lack this kind of expertise, and this may not allow them to 
disseminate their models via a user-friendly environment. One of the positive steps taken in 
the field is development of deployment and hosting platforms such as Enalos Cloud Platform 
(http://www.enaloscloud.novamechanics.com/), Jaqpot (https://www.jaqpot.org/), and 
QsarDB (https://qsardb.org/). Through these platforms it is possible to deploy and share the 
developed nanoinformatics models and ensure their long term preservation and accessibility 
from the stakeholders. It is also possible to overcome issues with GUI impracticalities (as the 
ones mentioned before). Finally, these platforms contribute to making models Findable, 
Accessible, Interoperable, and Reusable-FAIR. Many of the identified models available as user-
friendly tools are available through these platforms. 

• The model’s dissemination as a user-friendly application or tool is not sufficient without 
supplying training material on how to use the tool and interpret the results. Many of the 
presented tools in the appendix of this report did not provide any training material (e.g., video 
tutorial, written manual, etc.). In some of these cases a short presentation of the tool is 
included in the relevant scientific publication however, a more detailed manual could be very 
beneficial for the stakeholders, specifically on topics such as how to select the input parameters 
and how to interpret the results.  

• As stated before, the majority of the analysed cases involved the definition of the applicability 
domain as a step in the regular modelling procedure. However, a remarkably large number of 
studies (44%) did not specify the models’ applicability boundaries, raising doubts on the 
reliability of the generated predictions. Another issue in some of the tools is that, although the 
domain of applicability is defined within the model development workflow (e.g., included in the 
relevant publication or standardised report), it is not included in the tool, for example, through 
an indication of the reliability of the predictions based on the applicability domain limits. 
Without these limits it is not possible to increase the users’ confidence in the produced 
results/predictions and this may prevent them from using the respective tools in real life 
applications.  

Experts’ opinion 

• Firstly, experts both from academia and the industry responded to the questionnaire, and the 
69% of them claimed to have employed in silico methods or tools for research, for regulatory 
or commercial purposes, using a variety of tools. Also, the experts were involved in the 
development of nanoQSAR, grouping, and read-across models, as well as PBPK models, 
molecular simulations, mixture toxicity prediction models and (quantitative) AOPs, therefore a 
broad range of the methodologies was covered in this report. As for the development of the in 
silico methodologies, the majority of the experts seem to use the recommended OECD 
guidelines for validation purposes; both internal and external validation techniques were 
reported in the relevant questions. Likewise, most of them use several statistical measures to 
evaluate and ensure the credibility of their models, along with providing the applicability 
domain and a QMRF/MODA report. In general, model developers seem to be in line with the 
guidelines for the computational methods validation and dissemination. 

http://www.enaloscloud.novamechanics.com/
https://www.jaqpot.org/
https://qsardb.org/
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• The NMs data scarcity and heterogeneity issue was also highlighted by the experts. In fact, in 
their majority they agreed that experimental NM data are limited, scattered across different 
sources and in different formats, and not collected or harmonised under a common protocol. 
The protocol of data collection and curation refers to a predefined procedural method that is 
followed for designing and conducting an experiment, and for analysing the results. It allows 
experimental replication and permits researchers to assess data consistency when they are 
collected from different sources. 

• Meta-data (e.g., the experimental conditions under which descriptors are measured or the 
assumptions made for molecular descriptors calculations) are important for data organisation, 
consistency and searchability, but are often also unavailable. This makes it difficult for the 
stakeholders to fully understand the experimental system that is modelled, impedes data 
organisation in central repositories and also leads to the development of models for a limited 
number of NMs with limited applicability domains.  

• The data scarcity could be ceased by data collation (combination of existing datasets in an 
extended set) and more reliable models or models with extended applicability domains could 
be developed. To achieve so, the included NM samples and/or descriptors in two datasets 
under consideration should be consistent and compatible, to ensure that the data represent 
the same information. However, the meta-data scarcity/unavailability prevents data collation 
to enrich existing datasets, e.g., following the example of the NMs zeta potential, if the 
experimental conditions under which it is measured are unknown, it is not possible to combine 
its values for different NMs under the same descriptor. Thus, the model development for larger 
and/or more diverse datasets is not possible.  

• Despite of the weaknesses concerning NM-data availability, 70% of the responders reported 
that data quality control is a standard procedure prior to modelling, through various data 
curation and pre-processing steps. Another encouraging finding is that experts prefer both FAIR 
and Open Data to develop their models, which showcases a preferability towards transparency 
and data accessibility. Both cases demonstrate that model developers are careful about the 
quality of data and take steps to cope with data scarcity and known issues with data quality, in 
order to enhance the reliability of their models. 

• As far as the dissemination of the developed in silico methods as user-friendly tools is 
concerned, nearly 80% of the respondents highlighted the necessity to support the regulatory 
applications and the SbD of novel NMs, therefore experts who developed such methodologies 
reported that they provide them, as web-tools and software. About three-quarters of experts 
agree that model dissemination as a user-friendly tool is necessary. More specifically, more 
than half of the responders reported that they include the source code for their developed 
tools, while 40% of them provide APIs for the remote accessing of their tools. Moreover, even 
though some modellers require a one-time-fee or a subscription for using their tools, the 
striking majority are willing to make their models freely available to stakeholders. Overall, 
experts demonstrate a mentality towards providing user-friendly workflows, web-tools, and 
software, aiming to increase confidence and facilitate accessibility for stakeholders. 

• Nonetheless, experts also highlighted the reluctance of the stakeholders to use the available 
models and tools as they are not systematically validated or independently assessed, and they 
are not linked to real cases and applications. 

• Interestingly, the majority of the experts themselves claimed that they are not aware of any in 
silico methodologies integrated in industrial, regulatory or research level for the SbD, grouping, 
and read-across of NMs. 

• The experts’ feedback can be summarised in the following opinion: “There is no open science 
core: no open data core, no open-source core, no open standards core”. Specifically, the 
absence of community standards regarding Open data and models hinders the regulatory 
acceptance of the alternative in silico methodologies and their extensive use in NMs SbD and 
risk assessment.  
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Case studies 

• Three case studies were conducted for illustrating how the identified in silico methodologies 
can be employed in NM-related applications. In the first case study, we developed read-across 
models or used tools reported in the literature for the assessment of the anti-microbial activity 
of various carbon-based NPs. The interactions between carbon-based NPs and a SARS-CoV-2 
RNA fragment were quantified for the examination of the potential of stabilising the cov-RNA 
fragment. The employed methodologies were the “EnaloskNN” integrated in KNIME platform, 
secondly, the Apellis web-tool, and a quantitative read-across method by the DTC Lab. 

• We observed that all three methods in this case study produced quite similar results in terms 
of validation statistics, indicating that the performance of the models is consistent. Also, all 
three models are adequately validated, thus encouraging the stakeholders to trust the results 
and use the generated predictions. Consistent performance across the models is also observed 
from the domain applicability, since the two models that offer a reliability indication based on 
their applicability domain, EnaloskNN and Apellis, seem to provide 100% reliability for the 
testing set, implying that similar NMs’ results are likely to be reliable. Additionally, those web 
tools deploy interactive visualisations for the interpretation of results in a user-friendly 
environment. By bringing together the predictions from two or more different models in a 
consensus framework, it may reduce the bias of each individual model. Therefore, the 
assessment of the endpoint is more trustworthy, and the stakeholders can have greater 
confidence in the final results.  

• The second case study focused on the assessment of six different tools available as ready-to-
use online applications for the prediction of TiO2-based NMs’ endpoints. The availability of 
these computational models through a GUI permits non-informatics specialists to use them to 
design novel NMs and for risk evaluation without involving any complicated processes and 
technical details. Thus, the models are addressed to a larger audience, both for researchers 
and designers, and they allow faster sensitivity analyses or virtual screenings of newly designed 
NMs. By providing a practical and comprehensive interface, those tools facilitate predictions of 
various endpoint and toxicity-related properties, and they enable quick decision-making by the 
stakeholders. Additionally, the different TiO2-based are suitable for use in a safe-by-design 
framework, since they allow the exploration of the correlations between different properties 
or the prediction of the toxicity of a largely used NM. 

• On the other hand, after the assessment of those computational tools, a few drawbacks were 
identified which may discourage the stakeholders from using them. For instance, some tools 
did not provide the limits of the applicability domain or had inconsistencies with the original 
publications of the studies. In addition, most of these tools had inadequate tutorials, that would 
not help/guide the stakeholders to use them properly or to make use of all the available 
functionalities (e.g., the tutorials include too many technical details for the tool, or they lack a 
proper results interpretation). In other cases, no manual to use the tools is even offered. 

• In the third case study, we developed a predictive workflow based on the SAPNets scheme of 
interdependent predictive models. This workflow combines two or more existing 
nanoinformatics models in such a way that an input descriptor of the final model is predicted 
by another meta-model. SAPNets facilitate the utilisation of available models from the 
literature and contribute to the nano-data gap-filling since no experimental evaluation is 
needed. A further advantage of SAPNets, as seen from the case study, is the fact that it allows 
a more comprehensive analysis for the factors that influence other NM properties since they 
consider a wider range of descriptors. They also offer better guidance for safer NM design, 
provided that they highlight the structural characteristics, such as the size and the coating that 
affect the desired property, thus novel NMs with specific attributes can be designed with 
minimal error.  

• However, the applicability domains of the combined models should be clearly stated in the 
individual models to ensure the reliability of the models, and error propagation should be 



 
 

13 
 

calculated across the SAPNet. Additionally, details of the experimental conditions that regulate 
NM behaviour should be provided to ensure the compatibility of the combined models. 
Experimental and computational data and meta-date are essential for incorporating two or 
more separate in silico methods. 

General conclusions  

• The assessed studies in their majority are in a satisfactory quality level and efforts have been 
made to integrate in the developed computational workflows optimisation functions, and 
advanced methodologies (e.g., deep learning). 

• Work has been done in the models’ dissemination as user-friendly tools, and this may 
contribute to their use from stakeholders in regulatory and industrial sectors. The availability 
of models’ scripts in public repositories in combination with the existence of deployment 
platforms can also accelerate their integration in different research activities and expand their 
use from interested users. Nonetheless, there is also room for improvement regarding the 
inclusion of information on the applicability domain of the models within the tools and the 
availability of training material for each tool. 

Both the literature analysis and the experts’ opinion converged in the following challenges: 

• Data barriers exist regarding the available nanotoxicity-related datasets. Compared to 
conventional chemicals for which database solutions already exist (e.g., PubChem), 
standardised, structured, annotated, and reliable nanomaterial-related data are limited, and 
they are not always accessible. Data are found in different formats and there are consistency 
deficiencies between the data presented in different sources (e.g., data for the same endpoint 
are collected in different experimental conditions, under different protocols, or meta-data are 
not available). This prevents proper model development and validation, as well as datasets 
collation and enrichment. 

• Apart from the data-related issues, the lack of models’ reporting -including all the relevant 
information for model development, validation, and possible assumptions- poses barriers in 
their proper use from stakeholders.  

• Setting aside the aforementioned issues, one of the greatest challenges in the field of the NMs 
in silico assessment, is their integration in the industrial, regulatory or research activities for 
the SbD, grouping, and read-across of NMs. The confidence of the relevant stakeholders in the 
developed models is still low, mainly due to the limited modelling information from the 
developers, the lack of sufficient data to provide a good applicability domain, and the lack of 
validation with conventional experimental methods. 

Outlook 
From both the literature research and the interviews, it was derived that the data-related limitations, 

as well as the lack of proper model reporting, create several issues (limited validation possibilities, 

reduced applicability domains, difficulties in datasets enrichment and models’ combination) that 

impede a wider regulatory acceptance of the computational methods for NMs risk assessment. For this 

reason, the following suggestions are intended to assist in the process of the regulatory approval of the 

models. 

• The key to resolve the identified flaws is transparency at all levels (for generated data and 
models). This may include the accessibility of the datasets enabling the fast computational 
assessment of several NM categories, expanding the number of the already in silico assessed 
NMs. Existing nano-databases (e.g., eNanoMapper, NanoPharos, nanoHUB, etc.) can be 
employed to host ready-to-model datasets. In fact, some of the models assessed in this project, 
were built using data that are available in some of these databases. 
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• Transparency can be further improved by making data and meta-data FAIR. Finding data is the 
first step towards reusing it. Both humans and computers should have no difficulty finding data 
and meta-data. This step in the FAIRification process is crucial since machine-readable meta-
data are required for the automatic discovery of datasets and services. Once the user has 
located the necessary data, they must be aware of how to access it, which may involve 
authentication and authorization. Usually, the data must be combined with additional data and 
must work with workflows or apps for analysis, storing, and processing, thus knowledge should 
be represented using a “vocabulary” that permits interoperability. FAIR’s main objective is to 
maximize data reuse. To accomplish this and support future combination of datasets, meta-
data and data must be adequately described to be replicated and/or integrated across multiple 
settings. Many repositories may be used for FAIR NM data storage (e.g., eNanoMapper, 
caNanoLab, and NanoCommons). 

• The support of the NInChI2 initiative (a machine-readable identifier to represent a particular 
group of NMs considering its necessary characterisation properties based on the International 
Chemical Identifier (INChI) concept) could also contribute to the generation and distribution of 
FAIR nano-data.  

• The development of novel nanodescriptors that encode and integrate the different NM 
components (chemical and structural information, interactions with biomolecules, etc.), as well 
as the development of computational methodologies that consider such descriptors will 
support the reliability and interpretability of the models. 

• The modelling workflow (including data pre-processing or filtering, data splitting, validation, 
any robustness or sensitivity analysis tests, domain of applicability definition) should be clearly 
presented either via a scientific publication or through a report that accompanies the model.  

• In addition, when all the modelling information is presented in a transparent and 
understandable manner, stakeholders are able to understand easily if two or more models are 
suitable to be combined in predictive workflows before committing too much time and effort 
in the process of studying all the different aspects of the modelling procedure or searching for 
the training data.  

• Considering the current situation, it is necessary that researchers are particularly cautious and 
that they study thoroughly the respective parameters when combining existing models into 
predictive workflows to ensure their compatibility and the generation of reliable predictions 
across the workflow (e.g., compatibility of linking descriptors, error propagation, applicability 
domains).  

• Modellers need to provide as many statistical measures as possible, in order to map the actual 
performance of the models, including the weaknesses of the selected approach. 

• The communication between different stakeholders is also important. Modellers are often not 
specialists in the field of nanotoxicity, thus a communication and collaboration channel 
between modellers and specialists will contribute to the interpretation of the toxicity 
mechanisms revealed by the models, or the mapping of the descriptors’ space.  

• Communication between modellers and specialists will also contribute to the improvement of 
the developed tools. Feedback can be given on the different tool features and/or other 
suggested applications may be developed, to expand the usefulness of the tools in real case 
scenarios.  

• Stakeholders of the models and tools usually have different backgrounds from the 
computational scientists. Thus, the use of the developed models/tools cannot be taken for 
granted. Effort should be spent in the preparation of training material that accompanies each 
tool, where its use is presented in detail and in simple language. The necessary scientific or 
technical terms, the input, and the expected output can also be provided through the 
respective manual.  In cases where the scientific group developing a predictive model lacks 
time, resources, or know-how to build a tool with a graphical user interface, they are strongly 
encouraged to share their code in public repositories (such as GitHub), so that other teams can 
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access, modify -if necessary- and disseminate the models as user friendly applications (e.g., as 
previously stated, QsarDB, Jaqpot and Enalos Cloud are deployment platforms where models 
can be uploaded as user-friendly web applications). 

• To assess the level of readiness of the developed tools in terms of their regulatory acceptance, 
the Transparency, Reliability, Accessibility, Applicability and Completeness-TRAAC framework 
can be employed. This framework evaluates the tools through a series of criteria that quantify 
their compatibility with regulatory frameworks and their usefulness and usability for end-users. 
It also identifies, through its scoring system the possible limitations that impede the tools’ 
regulatory acceptance, contributing to their future improvement3.  

• To enhance the trust on the computational results of the different user-friendly tools, it is 
important that they are frequently updated with newer input or data. Outdated tools are 
possible to be rejected by the stakeholders. 

• Using the in silico tools in real-life cases or in comparison to results from conventional/empirical 
test methods (e.g., in vivo, in vitro) is another technique to support regulatory acceptance and 
finally encourage their employment as NM testing supporting methods and/or alternatives. The 
necessary communication to perform such testing can be established by taking advantage of 
the existing network of computational teams and laboratories with collaborators or consortium 
members in the Industry, Academia, or Regulatory Agencies. We should note here that this can 
be a short-term procedure that will not increase the use of laboratory animals. In addition, it is 
not necessary to perform in vivo experiments from scratch: industries and laboratories that 
perform NMs risk assessment on a regular basis, can employ the in silico tools that are already 
available, and compare the predictions to their previous experimental results to enhance their 
trust in the methods. A campaign from national and international institutions highlighting 
(possibly through success stories involving the design/optimisation of NMs based on 
computational methodologies) the time and resources that could be saved from the use of 
computational methods as alternatives for NMs risk assessment, could spread their use to the 
stakeholders.   

• Frequently, lack of time or a scientific journal’s publishing guidelines do not allow the extensive 
and detailed presentation of all the model aspects. For this reason, the use of standardized 
reports covering the key model aspects should be a prerequisite when a predictive model is 
submitted to be published. In addition, the use of a standardised format when reporting a 
model allows the organisation of the necessary information in a straightforward manner.  

• While reviewing some of the models and tools presented in various publications, we identified 
certain flaws and errors. We recognize that the peer review process for scientific articles can 
be challenging and that it is possible for basic (e.g., inadequate model validation) or minor 
errors (e.g., model parameters typos) to slip through. Therefore, it is important to improve the 
reviewing system so that the highest standards of scientific rigor can be upheld to maintain the 
integrity and quality of scientific research (e.g., through seminars for academic writing for 
authors, formal reviewers training, reviewers rewarding, use of AI tools to detect artificially 
generated text or manipulated plots and images before the manuscript is sent to the reviewer, 
etc.). 

• Finally, to ensure that the requirements are met (e.g., reporting of all modelling aspects 
including data used, assumptions, validation, evaluation metrics, applicability domain limits, 
code availability), peer-reviewers should be encouraged to specifically check if the above-
mentioned criteria are met by the author. In case they are not included in the publication, the 
reviewers should encourage the authors to supplement their work with this key information to 
make it more meaningful, applicable outside research and to contribute to the further 
development of computational methods to support the domain of nanosafety. Publishers 
should also update their reporting standards. For example, Nature requires that the authors 
provide their code and data through public repositories to improve transparency and 
reproducibility of the results4.  
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1 Introduction 
The rise of nanotechnology applications has led to the discovery of numerous novel materials that are 

different from their bulk counterparts with respect to their physicochemical properties. This has 

resulted in a rapidly expanding spectrum of commercial uses that take advantage of these novel 

properties (such as cosmetics, food additives, solar cells, paints, etc.). Nonetheless, the extended use 

of NMs in everyday life products could have consequences if a connection with long-term health and 

environmental hazards is found, or even simply suspected. Given the expense and time constraints 

involved with the experimental hazard and risk assessment, which commonly involves using animals, 

many NMs have not yet had their potential harmful biological effects thoroughly evaluated. The 3R 

(Replacement, Reduction, and Refinement) principles were created as a framework for conducting 

more ethical animal research5. In this course, animal replacement can be achieved by speeding up the 

creation and application of reliable, accurate computational models and tools that are based on the 

most recent research and technological advancements. Therefore, predictive nanoinformatics 

modelling can greatly contribute to the replacement of animals in NMs hazard and risk assessment. 

The main purpose of this study is to inform on current frameworks and current developments for read-

across and other computational methodologies, which are used as alternatives in NMs hazard and risk 

assessment, and in the NMs safety-by-design (SbD). The models and tools that are currently available 

for the in silico assessment of NMs were identified, evaluated, and discussed in this regard through the 

use of a structured literature study. 

The findings presented in this report are based on a carefully balanced combination of primary and 

secondary research for tools focused on the computational investigation of NMs, as well as on a hands-

on testing of the identified nanoinformatics tools or methods through the development of case studies. 

In the primary search, we directly contacted the relevant experts from Academia and Industry who are 

involved in the development of computational methods or are using such methods for the in silico 

investigation of NMs. We collected their opinion through a carefully prepared online questionnaire. In 

the secondary search, we conducted a thorough literature review to map the existing methodologies 

and tools that have been developed in the field of nanoinformatics, focusing on specific aspects of these 

models or modelling methodologies, such as: 

• The model development and validation process,  

• The existence of an applicability domain,  

• The availability of modelling data and the dissemination of the models as user-friendly tools,  

• The availability of information to reproduce the models and, 

• The models’ possible data gaps and weaknesses, etc.  

Based on the findings of the primary and secondary search, three case studies were developed with the 

aim to assess a representative number of nanoinformatics tools, to test their functionalities and 

generated results, and to discuss how these tools can be exploited in the NMs SbD and risk assessment. 

The results obtained for the literature research and for the case studies were built to provide a robust 

and validated analysis of the current state of the existing (read-across) models and tools for the in silico 

investigation of NMs. We particularly focused on the existing gaps and on the weaknesses that could 

be improved in the future, to further enhance the confidence of the stakeholders and their actual use 

on NMs risk assessment processes. 

This report is structured as follows: 
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• First the main types of computational methodologies and their different characteristics are 
presented to the reader with their respective assessment. 

• Next, the literature review (secondary research) methodology is provided, as well as the 
information extraction, collation, and its systematic indexing process. 

• The analysis of the collected publications and tools is presented next for each family of analysed 
models, focussing on specific aspects of the models. Especially for the nanoQSAR and 
grouping/read-across models, emphasis has been put on data and their 
availability/accessibility, the modelling methodologies, the model validation, the domain of 
applicability (DoA) and dissemination to stakeholders. Subsequently nanoQSAR and read-
across models are put through a quality assessment according to the above-mentioned criteria.  

• The findings of the primary research (interviews with the experts) are then provided with their 
respective analysis and outcomes with regard to the choice of the case studies. 

• Finally, the process of developing and the results of the three case studies, where a substantial 
number of methods and tools is tested, are presented and discussed. 

• Based on the above results, conclusions are derived and presented in detail. 

• Finally, a list of Appendices (I-VI) is added to the report to supplement the work, including 
information on the assessed studies and the interviews, extra graphs and tables that may be of 
use for the readers.  
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2 Main types of assessed in silico methodologies  
Even though NMs are extensively used in a plethora of products because of their special properties, 

several indications have been detected linking them to environmental, health and safety hazards. 

Therefore, many in silico methods have been developed to predict the risks for humans and the 

environment, posed by NMs, as an alternative to in vivo and in vitro animal testing. In this section we 

are presenting the results of the analysis of the computational models and methods collected during 

the literature mining. A brief presentation of the included families of models is presented here before 

proceeding to the presentation of the results of this project.  

2.1 nanoQSAR  
A quantitative structure–activity/toxicity/property relationship (QSAR/QSTR/QSPR), is a field of 

molecular modelling that employs statistical methods and machine learning to explore the connections 

and establish a mathematical function or a more complex model between chemical structure and 

biological activity6,7 or another property. The chemical structure of the studied molecules is encoded 

mathematically in the molecular descriptors and the activity is often known as the “endpoint”.  QSARs 

have been widely used in the fields of drug discovery and chemical toxicity. In the area of nanotoxicity 

the concept of QSARs (known as nanoQSAR or quantitative nanostructure-activity relationship-QNAR) 

has been adapted to the specificities of NMs aiming to correlate several NM properties 

(physicochemical properties, theoretical molecular descriptors and structural descriptors of the NMs 

core and coating) to observed toxicological effects or other properties8,9. The output result of 

nanoQSAR models can be either qualitative, by classifying a NM e.g., as “toxic” or “non-toxic”, or 

quantitative, by predicting a numerical endpoint value. After obtaining the nanoQSAR model, it can be 

applied to a NM which had not been previously tested or was not included during the model 

development. Critical points a nanoQSAR study must contain, is the model validation, namely internal 

and external predictive ability, and the modelling approach (e.g., linear or non-linear regression). When 

analysing the results of this review we clustered all the QSAR-type models (QSTR, QNAR, QSPR machine 

learning, etc.) developed for NMs under the category of “nanoQSARs” as we considered that all these 

abbreviations are actually expressing the same family of models. 

2.2 Grouping and read-across 
The establishment of nanoQSARs is not a universal solution in the area of in silico nanotoxicity 

assessment. Due to a scarcity of experimental data, only a few theoretical descriptors are known for 

NMs. Thus, the proper application of nanoQSAR statistical techniques, including the essential external 

validation of the model, is frequently hindered by a lack of data6,8. Small data sets tend to produce 

models that are more likely to be overfit and have narrow applicability domains, which makes them 

unsuitable for estimating novel NM parameters. In addition, the heterogeneity of the different NM 

structures prevents the development of universal nanoQSAR models8. Grouping and read-across 

approaches emerged as alternative methodologies for data gap filling especially in cases of limited 

datasets. Read-across models are semi-manual approaches for making data-based predictions8 and are 

based on the concept that by interpolating or extrapolating the property of one or a group of NMs 

(analogue or source substances), the value of a similar NM (target substance) can be obtained with 

satisfactory accuracy10. Similarity between NMs is quantified based on the available physicochemical, 

atomistic, molecular, periodic table properties, image analysis descriptors, etc.  The Read-Across 

Assessment Framework (RAAF)11, created by the European Chemicals Agency (ECHA), is an internal tool 

for evaluating predictions of substance attributes based on read-across in the context of the 

Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) Regulation. To harmonize 

the emerging read-across techniques, ECHA also released a document including a systematic workflow 

for NMs grouping and read-across, consisting of seven steps (Figure 1)12. 



 
 

19 
 

 

Figure 1: ECHA’s recommended stepwise approach for the systematic and transparent data collection and documentation of 
read-across approaches. Image derived from the “Appendix R.6-1 for nanoforms applicable to the Guidance on QSARs and 
Grouping of Chemicals”12. 

2.3 Physiologically-based pharmacokinetic modelling 
Another approach for predicting toxicokinetics and potential hazard of NMs is the physiologically-based 

pharmacokinetic (PBPK) modelling. These models are based on the anatomical and physiological 

structure of the living system and offer an effective method for extrapolating dose and species as well 
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as for predicting biodistribution in the body over time13. PBPK models are essentially equations in 

different body compartments to evaluate how nanoparticles (NPs) behave after entering a living 

organism (humans and animals). In fact, each compartment represents a specific area of the body, such 

as a single organ or tissue (such as the liver), a group of organs or tissues (e.g., slowly perfused tissue), 

or a section of an organ or tissue (e.g., the intracellular space)14. To estimate concentrations of NPs in 

organs and tissues, it is considered that body compartments are connected with each other via blood 

flow. Later, according to the law of mass conservation for each organ/tissue, algebraic/differential 

equations are acquired and mathematically explain NP transport within the body8. The NPs clearance 

phaenomena (NPs removal from the body) are also considered in PBPK modelling to simulate long-term 

or cumulative exposures15. Certainly, several physiological and biochemical parameters for each organ 

(such as regional blood flows, tissue volumes, experiment-specific parameters) are required in order to 

solve the final system of equations. Eventually, PBPK models facilitate the understanding of 

mechanisms and processes such as absorption, (bio)distribution, metabolism, and excretion (ADME)14 

in a biological system, as well as providing indications for toxicity caused by NMs. Due to the different 

ADME behaviour of small molecules (drugs) and NPs when developing PBPKs for nano, several 

modifications to the “classical” PBPKs should be considered (e.g., differences in the transportation 

mechanism and kinetics, in the NMs metabolism and the effects of NMs in the lymphatic system)16. For 

example, NPs may or may not dissolve into the biological environment thus different cellular uptake 

and intracellular kinetics apply for each case17. This is the case of Ag NPs that partially dissolve into the 

gastric fluid18 resulting to a mix of Ag particles and ions that can be absorbed by the stomach and the 

intestines. These differences should be converted into modifications of the relevant PBPK model19.   

2.4 Molecular dynamics simulations 
The molecular dynamics (MD) simulations are a computational area for molecular modelling, used to 

simulate the interactions between NMs and cell membranes, proteins, and DNA by applying the 

principles of classical mechanics20. The basis of MD simulations is the solution of Newton's equations 

of motion for all the atoms that compose a system while bound to volume and temperature constraints. 

In fact, a “virtual experiment” is performed and by having visual evidence of the interactions between 

NMs and the biological environment, it is possible to reveal all the molecular mechanisms that take 

place under the studied conditions.  Thus, it is possible to understand in an intuitive way the causes of 

cytotoxicity and to extract data such as the energy changes or binding free energies of NMs. In order 

to reduce the large system to a simplified unit cell, periodic boundary conditions are often used in the 

simulations. A force field that describes the system as a function of atomic coordinates is required to 

run an MD simulation. According to the type of force field used, there are three different MD strategies: 

coarse-grained (CG) simulations, where a simplified representation of the system is employed (groups 

of atoms are replaced by “pseudo-atoms”) to speed up computations, all-atom simulations, where 

forces are calculated based on intermolecular potentials, and ab initio simulations, where the forces 

between atoms are calculated based on first principles. An MD simulation is performed using special 

software packages, both commercial and open-source, (e.g., GROMACS, NAMD, and LAMMPS)21,22.  

2.5 Adverse outcome pathways 
The adverse outcome pathway (AOP) framework portrays a series  of causally related key events (KEs), 

between a molecular initiating event (MIE) and an adverse outcome (AO)23. A MIE is a special type of 

KE that explains the initial interaction between a stressor (typically a chemical compound/NM) and a 

biological target within an organism, one that causes perturbation and is the beginning of an AOP. The 

KEs are measurable and discrete changes in a physiological/biological state responsible for each step of 

the pathway. Relationships between two key events (KER) are used to connect one key event to 

another, by defining a causal and sequential relationship between them, and by determining the 
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upstream (causal) and the downstream (responding) event24. Finally, the AO can be defined at different 

levels: for human health effects, an AO rarely relates to whole population, but rather to specific organ 

damage (for example, liver fibrosis), which has consequences on the individual, whereas in 

environmental toxicology, the AO typically relates to growth inhibition, reduced survival, or 

reproductive impairment of an individual (for example, a fish), and the implications on the whole 

population23. The developed and assessed AOPs are systematically organised and shared through the 

AOP Knowledge Base (https://aopkb.oecd.org/index.html) and the  AOP-Wiki (https://aopwiki.org/) 

which are publicly accessible25. It is important that an AOP framework contains the Event IDs of key 

events and AOs, which are assigned a unique number automatically upon creation and are documented 

in AOP-Wiki. Additionally, the weight of evidence (WoE) must be clearly assessed, by providing scientific 

support and explaining the degree of confidence. Lastly, the DoA must be addressed in terms of taxa, 

life stage, sex, the level of biological organisation and other aspects of biological context according to 

the Organisation for Economic Co-operation and Development (OECD) guidelines for AOPs25. 

3 Extended literature search 
To perform the literature search we developed a specific protocol with standardised processes. The 

protocol covered all steps including identifying, selecting, and critically appraising relevant resources, 

and synthesising the current body of knowledge on nano-specific in silico and read-across methods.  

Structuring the methodology based on the specific protocol, ensured that:  

1. The entire study is based on sound scientific pillars, which will enhance the reproducibility of 
the study,  

2. The protocol will increase the credibility and transparency of the outputs of the review, so that 
they can be considered as the most relevant findings from scientific and industry literature in 
the field,  

3. The study will provide access to timely information on the state of the art, and  
4. The identified results are analysed, explored, and presented in a systematic, comprehensive, 

and informative way and visualised, where appropriate, with tables, graphs/charts, and 
datasets and, where possible, with infographics that are useful and interpretable.  

A draft protocol was developed for conducting the review, by defining the relevant questions and 

scope, the methods of the review, and the eligibility criteria for the inclusion of studies/reports and 

materials into the study. This helped to reduce bias and the reviewers were committed to following the 

documented process. In addition, the extensiveness and reproducibility of the search strategy and the 

transparent reporting of how studies were selected and included in the study reduces bias in the 

selection of research studies. The search strategy is described in such a way that readers can estimate 

how much of the relevant literature is likely to have been found.  

The review includes an assessment of the quality of the evidence in terms of study methodological 

soundness, which gives an indication of the strength of evidence provided by the review and allows 

emphasis to be given to the results from studies/sources of higher quality. The methodology of the 

review process is adequately documented to allow others to critically appraise the judgments made in 

study selection and the collection, analysis, and interpretation of the results and, if necessary, to repeat 

or update the systematic literature review. 

Overall, the fundamental principles of the systematic reviews are closely followed, i.e.,  

1. Methodological rigour and coherence in the retrieval and selection of studies/sources, 
assessment of their methodological quality, and the synthesis and interpretation of 
information,  

https://aopwiki.org/
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2. Transparency, and  
3. Reproducibility, as shown in Table 1. 

Table 1: Characteristics and description of the review process.  

# Characteristics Description 

1 Study questions Focused and explicit 

2 Eligibility criteria for inclusion or 

exclusion of studies 

Pre-defined and documented; objectively 

applied 

3 Description of the review method Reported and predefined in a protocol 

4 Literature search Structured to identify as many relevant studies 

as possible 

5 Methodological quality assessment of 

included studies 

Included, typically using a quality assessment 

tool 

6 Reporting of study results Full reporting of relevant results (numerical 

results) 

7 Synthesis Quantitative synthesis (meta-analysis) when 

possible 

 

3.1.1 Search strategy protocol 
The development of the search strategy protocol was based on the project’s main objective, which is 

to provide EUON with insight on available frameworks and state of the art (scientific) developments for 

read-across and in silico approaches as alternative approaches to the testing of NMs. It also includes 

the development of these alternative approaches for exposure as well as hazard and risk assessment 

of NMs, through structured literature reviews. The study examined the available frameworks and read-

across/in silico approaches already developed, as well as those under development (for which resources 

are publicly available). Based on the key aims of the project an initial set of key questions were identified 

that needed to be addressed through the review. These questions were used to define specific 

keywords to perform the literature search and evaluate the retrieved results, and which are highlighted 

in bold: 

1. Which frameworks for grouping and read-across do exist already? 
2. For these frameworks how were they developed and validated? 
3. How far did this go and for which purposes or application? 
4. What data or physicochemical properties and other in vitro or in vivo properties were used and 

were tested to build the testing strategy? 
5. Were they evaluated against critical parameters for reliability and applicability? 
6. Were any other properties (e.g., atomistic, molecular, periodic table) used for model 

development? 
7. Were there quality control processes implemented regarding the data and meta-data used? 
8. Were the data used or produced using regulatory compliant (e.g., OECD, ISO) guidelines? 
9. Are the data used compliant with the FAIR (Findable, Accessible, Interoperable, Reusable) and 

Open Data guidelines of the EC? 
10. Were the applicability domains assessed, communicated, and clearly explained? 
11. Have the in silico approaches been documented using a specific template (e.g., QMRF, MODA)? 

 

Based on these, the key search terms and the inclusion/exclusion criteria for study eligibility was 

defined to guide the entire process. Using a clearly defined protocol, which includes all the required 

search and evaluation criteria, we reduced bias, as the process was clearly specified in advance and the 
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reviewers were committed to follow it. This is strengthened further with the use of two independent 

reviewers for each resource. In case of disagreement, a third more senior reviewer was employed to 

provide the final decision on resource eligibility. It is noted that the reviewing team is multidisciplinary 

(chemists, physicists, pharmacists, bioinformaticians, chemical engineers), guaranteeing a thorough 

review. In addition, we reduced any bias in the selection of research studies by the extensiveness and 

reproducibility of the search strategy and the transparent reporting of how studies were selected and 

included in the project as presented in the section below. 

3.1.2 Selection of databases to be examined 
The first step in the review process was to identify search engines and DBs offering high-quality 

inventories on available frameworks and state of the art (scientific) developments for read-across and 

other in silico approaches. Indicative databases -in terms of access to academic journals, conference 

proceedings, etc.- or search engines that were mined include PubMed, Google Scholar, Scopus, 

UniChem, Scifinder, Reaxys, Web of Science, etc.  

3.1.3 Definition of search terms and Boolean operators 
Based on the project requirements (see key questions), we defined the relevant keywords to be used 

for retrieving the relevant literature. The search included a series of general searches, e.g., framework 

AND read-across AND in silico AND hazard AND risk AND nanomaterials. Further refinement included 

the defined key terms based on the project’s objectives, i.e., the available alternative approaches for 

exposure as well as hazard and risk assessment of NMs. In this way, it was possible to identify and 

collect data on all project aspects. Furthermore, extensive literature search was performed for any 

identified challenges/gaps during the review procedure. This ensures that any missed literature with 

respect to the gaps/challenges was identified and reported, along with an estimation of the work 

performed in the field. This is particularly important as the review covered a substantial amount of time 

and there is a high chance that the identified gaps/challenges reported in literature would, in some 

cases, be researched already.  

To maximise high quality data retrieval, we needed to identify the correct balance between the 

specificity and sensitivity of the research. These are key to an effective search strategy, with both 

presenting relevant advantages and disadvantages. A specific search provides a substantial amount of 

relevant research, while avoiding, to a large degree, irrelevant results. In this way there is a substantial 

amount of time saving when it comes to filtering and screening the results. The disadvantage is that 

the more specific the search becomes, the higher the risk of missing relevant literature. This is because 

specific search relies on searching very precise concepts and ideas and their combinations, while 

focussing on specific parts of the study, e.g., title and abstract. This can lead to data loss in the case that 

non-standard, modified, or novel terminology is used, or where a vague title and/or generalised 

abstract are present.  

On the other hand, sensitivity provides researchers with the opportunity to capture most of the 

relevant literature and substantially lowers the risk of relevant data loss. The disadvantage, in this case, 

is the fact that more irrelevant literature is retrieved as well. As a result, the time and effort required 

for filtering and screening increases. This is because a sensitivity-focussed search relies on using more 

generalised terms and their combination and does not focus on specific study parts. This leads to more 

hits, both relevant and irrelevant, that need to be carefully screened to discard irrelevant studies. 

Summarising, a specific search is aimed at answering research questions with a high degree of certainty, 

using clearly defined and specific search terms. Sensitivity is required when the researchers are looking 

to perform an exhaustive literature search and when the concepts and the questions needed to be 
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addressed are not clearly defined. In our case, we need to find the optimum balance between the two 

concepts, while not restricting the search to one or limited databases or specific parts of literature. 

3.1.4 Resources’ selection criteria 
As per the technical specification requirements, a clear set of resource inclusion and exclusion criteria 

has been defined to ensure high quality outcomes. These are based on the presented key questions, 

the project’s requirements, and complemented with general search criteria. The current set of inclusion 

and exclusion criteria proposed (based on applicability) are: 

Criteria for resource inclusion: 

• English Language publications. 

• Resources post 2010. 

• Resources (including reviews) discussing alternative methods for hazard assessment of NMs 
and/or QSARs, chemical categories, grouping, read-across, Physiologically Based 
Pharmacokinetics (PBPK)/Toxicokinetics (PBTK) modelling, in vitro and ex vivo experimental 
results, AOP framework- alternative mechanism-focused methods in risk assessment. 

• Resources from company websites, publicly available reports from research projects and full 
reports from the following H2020 and HORIZON projects: NanoSolveIT, NanoCommons, 
RiskGONE, Sabydoma, Nanogentools, CompSafeNano, Diagonal, WorldFAIR, NanoMILE, 
NanoFASE, etc.  

• Resources providing information on the development and/or validation of alternative methods 
(including AOPs). 

• Resources providing information on the boundaries, challenges, and/or gaps of relevant 
alternative methods. 

Criteria for resource exclusion: 

• Resources not in English. 

• Resources prior to 2010. 

• Resources in predatory journals (even if peer-reviewed). 

• Non-peer-reviewed resources without references. 

• Resources without full text access. 

• Resources not describing the methodology used and required meta-data in full (research 
studies). 

As stated before, both the screening and examination processes were evaluated, revised, and followed 

up by at least two individual reviewers, to prevent introduction of errors and personal biases, and if 

needed from a third senior reviewer. To facilitate the process the reasoning of rejection was 

documented by each reviewer, according to the given criteria. This ensures that the review was 

unbiased, and, in the case of disagreement or discovery of an error, it was easy to correct by other 

reviewers. While most duplicate findings were expected to be automatically removed, a minor number 

of duplicates remained and was identified during the evaluation and removed. The final list of 

references retrieved from the databases in total, the number of studies excluded in each review step, 

and the list of relevant references selected is provided. 

3.1.5 Synthesis, presentation, and interpretation of data 
Following the analysis of the collected studies based on the reported criteria, the research team 

proceeded to data synthesis, presentation, and interpretation. In the case of quantitative data, meta-

analysis approaches were employed for analysis. When possible, the results were presented in tabular 

form using summary tables and visual tools (e.g., graphs, infographics) to assist with their interpretation 

and to ensure transparency of the process and its results. The research team was continuously 
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performing a well-structured analysis and discussion of collected data, to produce conclusions and their 

clear presentation, as part of the last step of the project. 

4 Information extraction 
After searching and identifying the research studies that would be included or excluded in the project, 

their thorough analysis was performed. Through an evaluated screening and examination process, we 

conducted a systematic extraction of information from the scientific publications or the publicly 

available EU and nationally funded project deliverables/websites. Specific aspects were identified based 

on which each reviewed study/tool was evaluated. The reported aspects when extracting the details 

from each source are the: 

• Information on the read-across and in silico validated alternative methods (including type of 
modelling methodology, endpoint information, modelling data information on the dataset’s 
size and descriptors). 

• Information on data filtering (e.g., statistical or manual following experts’ opinion) and variable 
selection. 

• Information on the validation strategy (e.g., OECD guidelines) of the reported alternative 
methods. 

• Reported statistical measures to evaluate the models’ performance. 
• Information on the alternative method applicability domain. 
• Information on the applied sensitivity analysis or robustness tests, if any.  
• Information on the mechanistic interpretation of the model. 
• Information on the development and reproducibility of the alternative method, through 

standardised reports e.g., QMRF, MODA. 
• Information on the availability of details to enable evaluation of the validity and suitability of 

the selected test methods. 
• Information on the availability of the methodologies through a Graphical User Interface (GUI) 

(e.g., as web services) or as scripts in public repositories. 
• Models’ possible data gaps and weaknesses.  

Each publication was examined in detail and evaluated by at least two reviewers in order to eliminate 

biases and errors. The assessment results were gathered in a “master” Microsoft Excel spreadsheet file 

(Figure 2) for the facilitation of storing information, the comparison of methodologies, and the 

derivation of meaningful conclusions for all the assessed criteria. In the master Excel file, the lines 

correspond to tools or to publications, while the columns correspond to the criteria mentioned above 

along with a summarised description of the tools and methods. Further information about the data 

used in each study and their availability were collected in a different Excel sheet, in which we focused 

mainly on the types of properties used as descriptors and on the availability of data. When the process 

of methodologies’ analysis was completed, a different sheet focused on the quality assessment of the 

studies was created, where a quality score was assigned to each study based on the extracted 

information. The criteria used to perform the quality assessment of the methodologies were based on 

the key aspects of the analysis of the publications/tools (see §5.1.6). 
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Figure 2: Systematic collection of information from the reviewed publications and tools in the Excel file.  
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5 Critical analysis of the collected in silico tools and available models 
In this part of the report, we are presenting the results of the reviewed publications and models in 

respect to the methodologies of nanoQSAR, read-across, PBPK, AOP and the simulations (Table 2). The 

main part of the review is dedicated to the nanoQSAR and grouping/read-across models as they are 

considered the primarily data-driven in silico methods for the risk assessment of NMs. The main key 

points of the available models are included.  

Table 2: Number of assessed studies for different modelling methodologies. 

Type of computational methodology Number of studies 

nanoQSARs and grouping/read-across 132 

PBPKs 11 

MD simulations 28 

AOPs 8 

Other models (exposure, causal, dose-response) 11 

 

The selection of an in silico methodology over another to support the NMs hazard and risk assessment 

is a question of data and expedient outcomes. In Table 3 the required input and expected output 

information is presented for each computational methodology, as well as their advantages and 

disadvantages. The methodologies’ limitations related to computing power might be eliminated in the 

future as more potent hardware (e.g., graphics processing unit, GPU, accelerated calculations) and 

optimised software (e.g., parallelisation of processes) are being developed. It is also noted that in any 

selected computational methodology for the study of the NMs properties or interactions with biological 

systems, experimental confirmation of the results may still be needed. 
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Table 3: Comparison of the assessed in silico methodologies included in this project. 

Methodology Type of data Application Advantages Disadvantages 

ML based 
methods 

Typically -for a collection of 
NM samples- a set of 
properties/descriptors (used 
as independent variables) 
and a target/endpoint 
variable (dependent 
variable), in tabular format. 

• Supervised learning: Predict 
a variable of interest (e.g., 
NMs toxicity-related 
endpoints, physicochemical 
properties, etc.). 

• Unsupervised learning: 
Detect patterns in 
unlabelled datasets, 
clustering (e.g., for grouping 
of similar NMs). 

• They can handle multi-dimensional data and they 
can be used to model different endpoints (e.g., NMs 
toxicity or other properties).  

• The ML and the statistical algorithms can reveal 
interesting trends and highlight important 
descriptors that influence the endpoint of interest, 
only based on the information that hold input data. 

• Some ML algorithms support missing values (e.g., 
appropriate when NM data are scarce).  

• They can be easily automated to minimise 
stakeholders (especially non-informatics experts) 
interaction with the models.  

• They can be easily used for NMs screening to 
prioritise favourable candidates for synthesis and 
experimental evaluation.  

• Models trained on experimental or theoretical 
data of low quality propagate errors, produce 
false correlations, and may lead to 
interpretation inaccuracies (even if the model is 
considered to produce reliable predictions).  

• The models may lack “physical reality” if 
emphasis is given solely on the development of 
accurate, robust models based on statistical 
inference and sophisticated ML algorithms. The 
goal of the in silico-supported NMs risk 
assessment is to use the models as tools to 
interpret underlying physical or biological 
phenomena (e.g., NMs toxicity), and not to 
develop mere data-driven models.  

• Significantly large datasets are required to 
develop accurate models.  

• They risk being outdated if they are not 
frequently updated with newly produced data. 

nanoQSAR 
  

• They quantify the relationship of NMs structural 
properties to the query endpoint.  

• The are expanded to consider NM specificities 
(physicochemical properties, theoretical, 
molecular, and structural descriptors of the 
NMs core and coating). 

 
 
 
 
 

 
 
  

• Large datasets must be provided so that 
QSAR-type models are functional (limited 
nano-related datasets). 

• A common mechanism of toxicity is a 
prerequisite for modelling (the NMs 
variety and all the possible 
transformations that may occur during the 
NMs life cycle induce different toxicity 
mechanisms)6,26.  
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Grouping and 
read-across 

  
• Can be applied in cases of limited data (e.g., NM 

datasets with less than 20 samples).  

• They can handle data of different types (e.g., 
physicochemical, image, periodic-table, 
theoretical descriptors, toxicogenomics data, 
etc.). 

• Difficulties in the perception of similarity 
between NMs.  

• The lack of knowledge of the presumed 
mode-of-action driving the endpoint of 
interest.  

• Read-across does not necessarily imply the 
development of a model (e.g., 
development of conceptual frameworks 
without any practical information on 
assays and thresholds)27. 

Deep learning Big data (e.g., microarray 
data), unstructured data 
(e.g., NMs TEM images). 

 
• Features are learned directly from the data. • A very large amount of data is required to 

build the model.  

• It is a computationally expensive 
methodology.  

• In case of too complex models (many 
hidden layers) they are difficult to 
interpret. 

PBPK modelling System's (organism) data 
(e.g., weight, age, genetics, 
etc.), NM related data (e.g., 
physicochemical properties), 
and external exposure data 
(e.g., administration route, 
dose, or exposure duration). 

Prediction of internal 
distribution of NMs in an 
organism after exposure. 

• Ability to perform inter-species (e.g., from rat to 
human) or intra-species (e.g., from adults to 
children) extrapolation through scaling methods.  

• Integration of literature physiology data, contributes 
to the limitation of clinical trials. 

• Validation of PBPK models requires extensive in 
vitro and in vivo experimental data28. 

• Validation of PBPK models may be challenging 
in cases of inter-species extrapolation where 
relevant (human) biodistribution data are not 
available29.  

• The development of PBPK models based on in 
vitro data should be performed with caution, as 
NMs when entering the organism acquire a 
new biological identity (e.g., biocorona 
formation, altered surface chemistry, etc.)8 or 
undergo different transformations (e.g., 
dissolution)19. 
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MD simulations Size and composition of the 
NMs and composition of the 
NM coating (if existent). 
Information on the studied 
system (e.g., proteins, lipid 
membranes, etc.), pressure, 
temperature, or volume of 
the simulation box. Force 
field. 

Understanding of the 
mechanism of the interaction 
of different types of NMs with 
biological systems using 
classical mechanics and 
prediction of macroscopic NM 
properties. 

• The gained knowledge on the nano-bio interactions 
using MD (e.g., underlying mechanism) cannot be 
easily obtained experimentally. 

• As virtual experiments are designed from scratch 
there is a possibility of simulating systems that are 
not extensively studied experimentally (e.g., 
graphene in biological environments). 

• The possible toxicological effects induced by the 
interaction between NMs and biomolecules can be 
predicted and integrated in the SbD of novel NMs. 

• The high computational cost of these 
methodologies allows analysis only for small 
systems and for limited time scales.  

• To speed up simulations coarse-grained force 
fields can be used (instead of density functional 
theory simulations), that may affect the 
accuracy of the results.  

AOPs Any biological data 
(including toxicogenomics). 
Any in vivo, in vitro and in 
silico data to support the 
AOP DoA. 

Description of the molecular 
mechanisms that lead to 
adverse outcomes (e.g., lung 
fibrosis) starting from a 
molecular initiating event (e.g., 
occupational exposure to NMs 
inducing interaction with the 
lung resident cell membrane 
components, AOP: 173)24. 

• Systematic collection of weight of evidence and 
knowledge organisation.  

• Link of mechanistic endpoints (e.g., DNA mutation) 
to apical endpoints (e.g., carcinogenesis). Use of 
alternative-fast tests in NMs risk assessment.  

• Read-across similarities between NMs with respect 
to AOP activation can be determined (in case of 
available quantitative data)30. 

• Identification of knowledge gaps8.  
More information can be found in Leist et al.30. 

• The effect of time cannot be considered in the 
AOPs. 

• Binning of large groups of events30. 

• Several AO-related limitations (e.g., for 
inflammation-mediated AOPs: the complexity 
of measuring and quantifying inflammation in 
vitro)31. 

More information can be found in Leist et al.30. 
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5.1 nanoQSAR/read-across 
In Appendix I, a list of all the assessed grouping/read-across and nanoQSAR studies and models is 

presented, including all the key information of each model (modelling technique, validation, 

applicability domain, data availability, etc.). 

5.1.1 Data and availability 
In order to study and analyse the entire life cycle of NMs and to create in silico approaches as 

alternatives to costly and time-consuming experimental procedures for the assessment of NMs toxicity, 

the scientific community largely relies on data. Data are either produced by the scientific teams that 

later develop the predictive models, or they are retrieved from the literature or NMs-specific databases 

(Figure 3).  

 

Figure 3: Data sources for the datasets used to build nanoQSAR and read-across models. Some studies included more than 
one model and thus more datasets were used in the same study. 

Furthermore, data scarcity is a known issue when studying the NMs entire life cycle32. In this review we 

also recorded the studies that were based on publicly available datasets (e.g., datasets included in 

databases, in the supporting information of scientific publications, or they are produced by the same 

scientific team performing the modelling). Data unavailability was marked as a result, even in cases that 

only a part of the data is available (e.g., toxicity endpoint available but molecular descriptors used in 

modelling not available). The results are presented schematically in Figure 4. 
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Figure 4: nanoQSAR and read-across models trained with publicly available data. 

The datasets used regularly in the development of nanoQSAR and read-across predictive models and 

methodologies  are presented below. The number of tools/methodologies that were based on these or 

part of these datasets is presented in the brackets. 

• This dataset, generated by Walkey et al.33, consists of 105 gold (Au) and 16 silver (Ag) NPs with 
different surface functionalisation. The organic surface ligands are classified according to their 
chemical structure and net charge at physiological pH, as “neutral”, “anionic” and “cationic”. 
NPs physicochemical properties as well as their protein corona composition (fingerprint) are 
available. The endpoint of interest is the NPs cell association to A549 cell line, considering the 
magnesium content of the cells. The cell association values are log2-transformed prior to 
modelling. [#studies: 933–41], 

• Weissleder et al.42 synthesised a library of 146 NPs with the same metal core (a monocrystalline 
magnetic NP, with a 3 nm core of (Fe2O3)n(Fe3O4)m covered with a layer of 10 kDa dextran, 
that was cross-linked with epichlorohydrin and aminated by reaction with NH3) and different 
surface modifiers (organic small molecules conjugated to the NMs surface). The cellular uptake 
of the NPs in human pancreatic cancer (PaCa2) cells (endpoint) was measured and the 
respective values are presented for 109 of these NPs in the publication of Fourches et al.43. 
Considering that the NPs have the same metal core, they are characterised by the surface-
modifying molecules and thus, cheminformatics-based descriptors can be generated for each 
NP complex. Different research groups calculate molecular descriptors based on the surface 
organic molecules’ SMILES specification by employing different methodologies and use them 
as input data to the developed models. [#studies: 743–49], 

• Puzyn et al.50 developed a dataset of 17 metal oxide (MeOx) NMs (ZnO, CuO, Al2O3, Fe2O3, SnO2, 
TiO2, V2O3, Y2O3, Bi2O3, In2O3, Sb2O3, SiO2, ZrO2, CoO, NiO, Cr2O3, and La2O3) assessed for their 
cytotoxicity to bacteria Escherichia coli. Cytotoxicity is expressed in logarithmic values of molar 
1/EC50 (the effective concentration of a given MeOx that reduces bacterial viability by 50%). 
Semi-empirical quantum-mechanical calculations produced molecular parameters that encode 
NMs reactivity-related electronic properties. [#studies: 1526,39,58–62,50–57], 

• This dataset, generated by Gajewicz et al.63, consists of 18 MeOx NPs (ZnO, Al2O3, Fe2O3, SnO2, 
TiO2, V2O3, Y2O3, Bi2O3, In2O3, Sb2O3, SiO2, ZrO2, CoO, NiO, Cr2O3, WO3, Mn2O3 and La2O3) tested 
for their toxicity to the human keratinocyte cell line (HaCaT). Cell viability was measured and 
expressed in logarithmic values of molar 1/LC50 (the concentration that provoked a 50% 
reduction of the cells after 24 h exposure). For the NPs quantum-mechanical -calculated with 
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semi-empirical methods- and image descriptors -calculated from NPs TEM images- are 
provided and can be used as input variables to the in silico models. [#studies: 1226,39,62,63,49,51,54–

57,59,61], 

• Shaw et al64. developed a dataset originally consisting of 51 coated iron oxide NPs, determining 
their toxicity class as either “active” or “inactive”. Activity was described by a “bioactivity 
profile” which averaged 64 features and conditions based on the assay z-scores for all possible 
combinations of 4 doses, 4 different cell lines, and 4 different in vitro assays. [#studies: 343,65,66 
where authors used 44 out of 51 NPs], 

• Zhou et al67. generated a dataset consisting of 83 functionalised multi-walled carbon nanotubes 
(MWCNTs) experimentally characterised using six in vitro assays with surface molecular 
diversity design, combinatorial library synthesis, and multiple biological screenings. The 6 
assays were: protein binding to proteins bovine serum albumin (BSA), carbonic anhydrase (CA), 
chymotrypsin (CT), and haemoglobin (HB), nitrogen oxide (NO) generation and cell viability by 
WST-1 assay. Again, the MWCNTs are characterised by their surface-modifying molecules and 
thus, cheminformatics-based descriptors can be generated for each MWCNTs complex based 
on the surface organic molecules’ SMILES specification. Different research groups calculate 
molecular descriptors by employing different methodologies and use them as input data to the 
developed models. [#studies: 368–70]. 

• In the publication of Oksel et al.71 additional datasets used frequently in nanoQSAR studies are 
presented. 

The types of NMs covered by the nanoQSAR and grouping/read-across studies are presented 

schematically in Figure 5. 

 

Figure 5: Types of NMs covered by the nanoQSAR and read-across studies. Some studies included models for more than one 
type of NMs. 

The properties or toxicity behaviour that were used as endpoints for the developed nanoQSAR and 

read-across studies have been classified into the following categories, in order to organise and examine 

them collectively: 

• Ecotoxicity/environmental fate: Lethality in embryonic zebrafish72, NMs concentration in plants 
roots73, response on Zebrafish embryo74, immobilisation of Daphnia magna75, etc. 

• Toxicity: Cell association39, cellular uptake48, cell viability76, genotoxicity77, cytotoxicity50, 
oxidative stress78, exocytosis in macrophages79, etc. 
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• Property: zeta potential1, NMs stability80, tensile strength of graphene81, adsorption 
coefficients82, electronic properties83, protein corona formation84, protein carbonylation85, 
protein binding70, etc. 

The different endpoint categories are presented schematically in respect to the number of studies in 

Figure 6. 

 

Figure 6: Endpoint types of the nanoQSAR and read-across studies. Some studies included models for more than one endpoint. 

The effectiveness of a data-driven prediction method or model (such as nanoQSARs and read-across) is 

significantly influenced by the information encoded in the input variables. The performance of the 

generated predictive model may decrease, and the processing time required by the modelling 

algorithm may increase with the inclusion of non-informative data. The use of the datasets as is without 

any filtering steps may also result in overfitted models (modelling of the data errors). Variable (or 

feature) selection prior to modelling removes noisy attributes that do not statistically contribute to the 

analysis or are directly correlated to other attributes, which improves the algorithms’ performance86. It 

also leads to the development of simpler and more comprehensive models by pointing out the variables 

that are significant for the studies endpoint87. Studies that included data filtering (in their majority 

statistical filtering such as correlation or low variance filtering) or a variable selection process prior to 

modelling are presented in Figure 7. In cases where variable filtering is not performed per se in a study, 

but a filtered datasets is used based on the variable selection results of former studies on the same 

dataset, we considered that this variable selection also covers the latter study and in the results of 

Figure 7 these studies are included in the “performed” class.  
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Figure 7: nanoQSAR and read-across studies including a variable selection step.  

At this point we have to underline that when describing the NM data used to build the in silico models, 

the presentation of the NMs composition using only the chemical formula should not be considered 

sufficient when more than one phases exist. More specifically, a single material is consisted of atoms 

arranged in space.  The types of atoms and their ratio are encoded in the material’s chemical formula 

(e.g., TiO2). However, different arrangement of these atoms in space leads to different crystal phases. 

In crystallography, any specific rearrangement of atoms in space is called space group.  Different 

material phases present different extrinsic properties and thus, this information should be included in 

the characterisation of NMs. The calculation of molecular/theoretical descriptors for an NM structure 

is also impossible, in case that the NM phase is not provided. Therefore, in the field of computational 

simulations, to produce theoretical descriptors the material space group is needed. It is possible to 

access the structure of crystal materials in Crystallographic Information Files (CIF) format and their 

phases/space groups from different databases, e.g., the Crystallography Open database 

(http://crystallography.net/cod/). For example, if we use this database to study TiO2 NM, we can see 

that TiO2 forms -most commonly- two phases, rutile and anatase which correspond to the space groups 

of P42/mnm and I41/amd respectively (Figure 8). In many cases in this review the space groups of the 

NMs are not provided48,72,95–98,73,88–94.   

 

Figure 8: [A] TiO2 rutile and [B] TiO2 anatase unit cells. Titanium atoms are marked in grey and oxygen atoms are marked in 
red colour. 
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An initiative that could greatly contribute to the comprehensive description of NM structures without 

producing data gaps, is the development of International Chemical Identifier (InChI)-type 

representations for NMs (“NInChI”) that could greatly enhance nanoinformatics workflows and NMs 

grouping2. More precisely, the development of machine-readable text representations of the NM 

structure could include the encoding -in layers- of its chemical composition (considering among others 

the NM crystallinity), its morphology, its surface parameters, functionalisation, and ligands. To support 

this effort, authors also presented an alpha version of an NInChI generator user-friendly tool released 

via Enalos Cloud platform (http://www.enaloscloud.novamechanics.com/nanocommons/NInChI/, 

Figure 9).  

 

Figure 9: Screenshot of the alpha version of the NInChI tool, to generate simple NM structures containing the NM’s core and 
potential shells and clusters. 

5.1.2 Model development 
The nanoQSAR models and the grouping/read-across strategies -to correlate the available NM 

descriptors to the endpoint of interest- are employing machine learning methods and algorithms. 

Depending on the type of endpoint (numerical value or class) different methods are employed 

(regression and classification methods respectively). Unsupervised clustering methodologies are also 

employed in grouping studies. In Table 4 the commonly used algorithms in the reported studies are 

presented, and in Figure 10 the number of regression and classification studies. Additionally, employing 

the development of novel hardware and architectures, deep learning approaches for large data analysis 

have also been developed for the in silico evaluation of NMs. Deep learning models are composed of 

multiple processing layers aiming to learn from representations of data with a high level of abstraction 

(e.g., processing and object recognition from images, audio-visual files, and speech). These models use 

their multilayer structure to extract complex and abstract features from the input raw data during 

training, thus no variable selection is needed prior to modelling. As an example, Karatzas et al.99, applied 

two deep learning methods on microscopic images of Daphnia magna exposed to TiO2, Ag, or AgS NMs 

under different media conditions. This work was done to detect regions of interest for possible 

abnormalities, caused by the direct or previous generations exposure to these NMs. Meanwhile, Yan et 

al.97 in their study to predict physicochemical parameters and nano-bio interactions, generated 

features of nanostructures from photos of NPs using convolutional neural network techniques. 

http://www.enaloscloud.novamechanics.com/nanocommons/NInChI/
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Table 4: Commonly used algorithms and machine learning methods or the reported nanoQSAR and grouping/tread-across 
approaches. 

Regression Models Classification Models Clustering Techniques 

Multiple linear regression 
(MLR)35,41,50,91,100,101 

Decision trees49,65,85 Hierarchical clustering 
analysis (HCA)26,102 

Partial least square regression 
(PLS)38,45,92,103–105 

k-nearest neighbour36,70,75 Self-organising maps 
(SOM)56,93,106 

k-nearest neighbour (kNN)1,89,107 Support vector machines77,108 K-means clustering90 

Multi-layer perception46,95,109 Logistic regression72,76,77,110 Principal component 
analysis (PCA)60,102,111–114 

Neural networks41,48,73,81,115,116 Naïve Bayes classifier66,77  

Extreme gradient boosting regressor 
(XGB)109,117 

Random forest72,77,113,118  

Random forest regressor38,41,61,90,109   

 

 

Figure 10: Type of nanoQSAR and grouping/read-across models according to the endpoint type (numerical-regression and 
categorical-classification). In some of the studies both regression and classification models were presented. 

Considering the particularities of the nanotoxicity field (the properties of materials in nanoscale, the 

NMs dynamic behaviour depending on the environment, the data scarcity, the need to expedite the 

NMs risk assessment process), effort have been made in the development of tailor-made methods that 

address these needs. In the study of Rybinska-Fryca et al112 the concept of structure-activity prediction 

networks (SAPNets) is presented as a strategy that effectively correlates the description of NMs' 

structure with their toxicity using a system of layers made up of nodes that are equivalent to “meta-

models”. Thus, the network is constructed from the endpoint to the descriptors that describe the NM 

structure layer-by-layer. As a result, SAPNets give enough details on what structural properties need to 

be changed to produce an NM with desired properties. Tsiliki et al.39 developed an R package called 

RRegrs that performs optimised model selection between ten simple and complex regression 

algorithms, contributing in that way in the development of reliable models in the field of 

nanoinformatics. Varsou et al.34,37 developed methodologies and tools to generate read-across 
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predictions based on different levels of similarities (thresholds) between NMs to achieve a refined 

selection of neighbours. The read-across predictions are based on the weighted average of 

neighbouring NMs thus, more similar NMs have more influence in the prediction. An advantage of these 

methodologies is that they are “universal”, meaning that they can be used to generate different models 

based on different datasets, allowing their use in different cases (endpoints, properties, or types of 

NMs) without any need of a grouping hypothesis. In the study of Chatterjee et al.59 a similar workflow 

is presented for the refined selection of neighbours and the generation of read-across predictions 

based on the weighted average. Varsou et al. have also been focused on the development of automated 

and optimised workflows for the search of the best NM grouping hypothesis and the development of 

local MLR models through the solution of mathematical programming problems35. Finally, Gajewicz et 

al.57 presented the Nano-QRA general grouping/read-across methodology that is based on the one-

point-slope, the two-point formula, or the equation of a plane passing through three points, which is 

effective for data-gaps filling.  

According to the OECD principles for the validation of QSAR models119, the QSAR models should be 

associated with “a mechanistic interpretation, if possible”. In this course, we recorded the studies 

where a discussion on the selected descriptors (descriptors space) and their influence on the endpoint 

is made or the studies where a mechanistic interpretation is provided for the query toxicity endpoint 

(Figure 11). The lack of the models’ mechanistic interpretation is possibly due to the lack of relevant 

knowledge (for the endpoint and the descriptors) from the part of data modellers, or due to the specific 

type of models. For example, in deep learning models based on images the descriptors are directly 

derived from them to perform classification, thus the assessment of the descriptors’ space is not 

possible.  

 

Figure 11: nanoQSAR and read-across studies, where a mechanistic interpretation of the models is provided.  

Finally, another point of interest was the possibility of the models’ implementation as user-friendly 

tools so that they serve the broader nanocommunity. Consequently, we searched for the 

implementation potential of the models considering the availability of the codes and scripts via public 

repositories (e.g., GitHub) or directly through the relevant publications, and for simpler models (e.g., 

linear models) we reported whether the derived mathematical formula is presented in the publications 

(Figure 12). In the same figure we have included the 29 nanoQSAR and read-across models and methods 

that already available through a GUI (see also §5.6 and Appendix I). We can observe that the majority 

of models can be (or already are) implemented, thus modelers should be encouraged to make them 
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available as tools or -in case that they lack the time and/or the know-how to develop such tools- they 

should be encouraged to share them through deployment platforms such as the Jaqpot 

(https://www.jaqpot.org/) and the Enalos Cloud  Platform 

(http://www.enaloscloud.novamechanics.com/). 

 

Figure 12: nanoQSAR and read-across models that already are or they can be easily implemented as user-friendly tools.  

5.1.3 Model validation 
The most important aspect in the creation and use of a predictive model is its validation, considering 

that it verifies the reliability of the model and its acceptability for external data. Model validation can 

be performed by internal and external validation techniques. In an external validation scheme, an 

independent data set, usually including experimentally derived values that did not participate during 

model development, is used to test the predictive ability of the model in “real” external data conditions. 

The simplest technique to perform external validation is to split the available data set into training and 

test sets at random41,46,61,75,120–122, commonly choosing a certain percentage of the NMs. Another 

broadly used algorithm to partition the data into training and test sets is the Kennard-Stone method, 

that allows representative selection of NM samples between sets by covering all the data 

space35,76,77,123. Then, a model is built based on said training data and it is applied to the remaining 

testing data. Finally, its capability of prediction is evaluated.   

In the Literature it is highlighted that for small datasets validation scores may vary between different 

splits of the data124. Given that many datasets used in the field of nanoinformatics are small (less than 

20 samples), an internal validation process can be applied to overcome this potential flaw86. Internal 

validation, which is a goodness-of-fit and robustness test119 is usually performed through k-fold cross 

validation, a popular resampling technique. Each time, the original data set is reduced either by one 

compound (leave-one-out) or by a small group of compounds (leave-many-out), thus a new model is 

developed in every step, and the selection bias that could occur by the selection of only one training 

set is eliminated. Especially in the case of leave-one-out (LOO) cross validation, all the available 

information is exploited thus, it supports the users’ confidence in the classifier’s accuracy and it is also 

a deterministic process and no random splitting is involved contributing to the elimination of the 

selection bias86. 

For reproducibility and transparency purposes, when splitting the data in a random way, authors are 

advised to provide the exact training and test NMs. In cases of a deterministic splitting (e.g., LOO cross 
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validation, Kennard-Stone method), this could be omitted. The number of studies that permit 

reproducibility through the availability of the training and test sets are presented in Figure 13. 

 

Figure 13: nanoQSAR and read-across models where training and test sets are provided, supporting the reproducibility of the 
methods. 

The predictive model parameters are advised to be selected (whenever enough data are available) by 

evaluating the model both internally (e.g., following a k-fold validation scheme) and externally (e.g., 

using a test set that did not participate in model development). Nonetheless, in a few reported models 

in this review (Figure 14), the results of either validation scheme56,102,108,113,125,126 are not properly 

presented (mainly because the grouping/read-across methods do not necessarily imply the 

development of a machine learning model9) or the models are trained and validated on the exact same 

data74,91,94,127,128.  

 

Figure 14: nanoQSAR and read-across models with an adequate validation strategy (including at least one of the internal or 
external validation schemes). 

Moreover, to ensure the robustness of the predictive models and to investigate whether the models 

are based on chance correlation, the Y-randomisation (or Y-scrambling) procedure is usually 
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employed39,40,129,130,49,53,60,75,84,89,90,100. Within the Y-randomization scheme, the training set’s endpoint 

values are randomly shuffled between NMs. All modelling steps are repeated several times using the 

original values of the independent descriptors and scrambled values for the endpoint variable. Then, 

when the Y-scrambled models are applied on the test NMs, if the original model is robust and reliable 

it is expected that the shuffled models perform poorly. Models with a provided robustness test (e.g., Y-

randomization, internal cross-validation or a sensitivity analysis scheme were recorded, and the results 

are presented in Figure 15. 

 

Figure 15: nanoQSAR and read-across studies where robustness tests are performed.  

5.1.3.1 Statistics and Metrics 

Model validation is also accompanied by a number of widely used statistical measures in order to 

describe and assess a model’s performance. Statistic metrics are chosen based on the predicted 

endpoint type (regression or classification methods).  

As described before, methods that fall in the former category use the descriptors as independent 

variables and attempt to predict the value of the target feature (numerical endpoint) by estimating the 

relationships between the dependent and independent variables. Consequently, the model’s 

performance is assessed based on how close the actual (𝑦𝑖) and the predicted (𝑦�̂�) values of the 

endpoint are, usually by calculating the differences (residuals) between actual and predicted values. 

Two main categories of metrics are distinguished: the 𝑅2-based metrics and the error-based metrics. 

The 𝑅2-based metrics (such as the coefficient of determination and the external explained variance 

coefficient), are expected to be closer to 1 for fitter models. Error-based statistics, such as the mean 

squared, or absolute error are expected to be closer to 0 for more accurate models. In some of the 

studies other tests are employed to assess the models’ performance, such as the Golbraikh and 

Tropsha’s criterion1,36,45,53,89,129,131,132. 

In Table 5 the metrics used in common base are presented. 𝑦𝑖  and 𝑦�̂� are the actual and predicted 

endpoint values of the 𝑖𝑡ℎ  sample respectively, �̅� and �̅̂� denote the average actual and predicted 

endpoint values respectively, and 𝑁 is the total number of samples. 

Different metrics are employed when a classification method is applied, since those models aim to 

predict the class of a target NM and not a numerical endpoint. The majority of the reviewed works use 

binary classification, meaning that the distinct classes are encoded as TRUE or FALSE34 (other categories 
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may be “1” or “0”76,133, or “toxic”/ “non-toxic”75,111, etc.). The performance of these models is evaluated 

based on the number of correct predictions and the number of misclassifications. In studies using such 

methods, confusion matrices are usually presented34,99,104,111, which are essentially tables showing the 

number of True Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN). 

Furthermore, other classification metrics including accuracy, sensitivity (or recall or true positive rate – 

TPR) and specificity (or true negative rate – TNR) are widely used, while a significant number of studies 

calculated F1-score, Cohen’s kappa, Matthews correlation coefficient (MCC), and 

precision34,65,68,75,76,99,104,118,134,135. The highest value most of those statistics may acquire, demonstrating 

a perfect prediction, is 1.  However, Cohen’s kappa and MCC can get negative values that show no 

agreement between predictions and actual data: 1 demonstrates a perfect prediction/agreement 

between actual and predicted values, 0 demonstrates a random prediction, and -1 demonstrates a false 

prediction/total disagreement136. Another indication of performance is the receiver operating 

characteristic (ROC) curve, which illustrates the diagnostic ability of the classifier as its discrimination 

threshold is varied118,121. More specifically, a ROC curve plots TPR on a vertical axis and false positive 

rate (FPR) of a horizontal axis and later the area under the curve is calculated which is expected to be 

closer to 1 when performance is good. 

Table 5 and  
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Table 6 present the most common quantitative validation measures found in the reviewed studies, for 

regression and classification models respectively. 

Table 5: Most common quantitative measures of goodness-of-fit and predictivity for regression models. These metrics are 
presented in detail in Appendix VI. 

Metric Formula Definition136 

Coefficient of Determination 

(𝑹𝟐) 
𝑅2 = 1 −

∑ (𝑦𝑖 − �̂�𝑖)
2𝑁

𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1

  [1] 

Estimation of the 
variation of 
predictions that is 
explained by the 
regression. 

Pearson’s Correlation 
Coefficient 

𝑟 =
∑ (𝑦𝑖 − �̅�)
𝑁
𝑖=1 (�̂�𝑖 − �̅̂�)

√∑ (𝑦𝑖 − �̅� )
2𝑁

𝑖=1 ∑ (𝑃𝑖 − �̅̂�)
2𝑁

𝑖=1

  [2] 

Measure of the 
strength of 
association 
between variables. 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦�̂�|
𝑁
𝑖=1

𝑁
  [3] 

Measures the 
average of the 
absolute error 
values. 

Mean Squared Error (MSE) 𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

𝑁
  [4] 

Measures the 
average of the 
squares of errors. 

Root Mean Squared Error 
(RMSE) 𝑅𝑀𝑆𝐸 = √

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

𝑁
  [5] 

Root square of 
average squared 
error. 

External explained variance 

coefficient (𝑸𝐞𝐱𝐭
𝟐 ) or external 

validation coefficient (𝑸𝐅𝟏
𝟐 ) 

𝑄ext
2  𝑜𝑟 𝑄F1

2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦train̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

  [6] 

The sum of squares 
on the numerator 
runs over the test 
NMs and the 
reference total sum 
of squares on the 
denominator is 
calculated 
comparing the 
predicted response 
of the test NMs 
with the average 
endpoint of the 
training set119. 

External validation coefficient 

(𝑸𝐅𝟐
𝟐 ) 

𝑄F2
2 = 1 −

∑ (𝑦𝑖−𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦test̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

  [7]     

The sum of squares 
on the numerator 
runs over the test 
NMs and the 
reference total sum 
of squares on the 
denominator is 
calculated 
comparing the 
predicted response 
of the test NMs 
with the average 
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endpoint of the test 
set59. 

Cross validated correlation 

coefficient (𝑸𝐂𝐕
𝟐 )50 

𝑄CV
2 = 1 −

∑ (𝑦𝑖 − 𝑦𝑖
CV̂)

2
𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦train̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

  [8] 

Authors applied the 
internal validation 
(cross validation 
leave-one-out 
technique) to 
reduce probability 
of the model’s 
overfitting to the 
training data, and 
to measure 
robustness of the 
model on the 
presence/absence 
of particular NMs in 
the training set50. 

Squared leave-one-out cross-
validation correlation 

coefficient (𝑸𝐚𝐛𝐬
𝟐 )137 

𝑄abs
2 = 1 −

∑ (𝑦𝑖 − 𝑦𝑖
LOÔ)

2
𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦train̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

  [9] 

This metric is 
calculated for the 
training set NMs 
based on the leave-
one-out 
predicitons137. 

 

One source of confusion (that can also impede the direct comparison of studies on the same data) is 

the use of different quantitative measures for the validation of regression models under the same 

symbol. A source that many researchers consult is the OECD validation principles for QSAR models119 

but still not all employed measures are covered by this guide and also, different definitions exist in the 

Literature for the same statistic metric and/or symbol. A characteristic example of misinterpretations 

is the use of symbols 𝑟2 and/or 𝑅2 or of the term “R-squared” to describe the “squared Pearson 

correlation coefficient” (Eq. 10) or the “coefficient of determination respectively” (Eq.1).  

 

𝑟2𝑜𝑟 𝑅2 =

(

 
∑ (𝑦𝑖 − �̅�)(𝑦�̂� − 𝑦�̅̂�)
𝑁
𝑖=1

√∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1 ∑ (𝑦�̂� − 𝑦�̅̂�)
2𝑁

𝑖=1 )

 

2

     [10] 

Where 𝑁, is the number of samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the ith 

sample respectively, and �̅� and 𝑦�̅̂�, are the average endpoint values of the experimental and predicted 

values respectively. 

In some studies, authors use the “R-squared” term without providing the explicit formula (or at least a 

definition)73,105,138–141 or they use the types and the definitions interchangeably50,90,100,142. This may 

potentially lead to erroneous comparisons regarding the reliability of models trained on the same data 

and could be overcome with the presentation of the “R-squared” formula on the results, instead of the 

mere use of the name or of the symbol. For example, in the publication of Pan et al.54 authors use the 

squared correlation coefficient (Eq. 10) in model validation. Later, they compare their results to the 

model of Puzyn et al.50 which use the correlation of determination in their model validation (Eq. 1). In 

fact, this misunderstanding is justified because Puzyn et al. use the term “squared regression 
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coefficient” in the main document of the publication, however they provide the R-squared formula in 

the respective supplementary material, and this corresponds to the “coefficient of determination”. 

We present some additional examples of possible misunderstanding: for example, Puzyn et al.50 and 

Fourches et al.137 use different symbols and definitions to describe the same metric (see 𝑄abs
2  and 𝑄CV

2  

in Table 5). In addition, the OECD definition of external explained variance (𝑄ext
2 )119 is the same to the 

external validation coefficient (𝑄F1
2 )59. In cases where the definitions are provided along with the 

publication (even as supplementary material) it is possible to make meaningful comparisons between 

models, otherwise misconceptions could arise.  
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Table 6: Most common quantitative measures of goodness-of-fit and predictivity for classification models. 

Metric Formula Definition136 

Sensitivity or 

Recall (True 

Positive Rate) 
𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  [11] 

The probability 

of a positive case 

conditioned on 

truly being 

positive. 

Specificity 

(True 

Negative Rate) 
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  [12] 

The probability 

of a negative 

case conditioned 

on truly being 

negative. 

Fall-out (False 

Positive Rate) 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
  [13] 

The proportion 

of false positives 

among all 

negative cases. 

Accuracy 

(ACC) 
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  [14] 

The proportion 

of correct 

predictions in 

the total number 

of samples. 

Precision 

(Positive 

Predictive 

Value) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  [15] 

The proportion 

of true positive 

among all 

positive 

observations. 

F1-score 𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  [16] 

Harmonic mean 

of sensitivity and 

precision. 

Matthews 

Correlation 

Coefficient 

(MCC) 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
  [17] 

Measure of 

association for 

the two binary 

variables, takes 

values between 

[-1,1]. 

Cohen’s kappa 𝜅 =
2(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑃)(𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑁)
  [18] 

Measure of 

inter-rater 

reliability, takes 

values between 

[-1,1]. 
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The selection of the appropriate measures of accuracy when quantifying a model’s performance and 

fitness is a matter of the model’s type (e.g., while neural networks aim to minimize squared error or 

cross entropy, support vector machines and boosting are designed to maximize accuracy)143. In 

addition, other issues should be considered, e.g., RMSE-type metrics may be susceptible to outliers (the 

squaring of prediction errors may produce bias in the final mean error value, considering that higher 

error values are more influential than lower prediction errors)136,144. The RMSE (squared) units may also 

be considered “unnatural”136. 𝑅2 or 𝑄2 -type metrics may be considered more intuitive, however the 

data range and the distribution of the endpoint values around their mean value in the train/test set 

may impede the reflection of the actual prediction errors144. Another example is related to the 

popularity of F1-score as a measure of accuracy. F1-score has received criticism due to its “conceptual 

flaws”145. More specifically, the F1-score lacks symmetry and varies when the positive class is switched 

with the negative class. In addition, the F1-score value is independent of the true negatives and thus, it 

fails to fully capture the binary classifier’s performance146. MCC and Cohen’s kappa are suggested as 

alternatives to F1-score145,146. To sum up, the choice of one performance measure instead of others 

leads to various compromises as no metric can be ideally employed for every modelling application143. 

To better evaluate the quality-of-fit and the predictivity of a model, it is advisable to present various 

metrics to acquire a complete and thorough validation of the prediction performance. In this course, 

when evaluating the reviewed models in this project, we applied a cut-off value of four metrics as the 

acceptable lower limit to consider the reported models properly evaluated (see §5.1.6). The studies 

(models and tools) that included a sufficient number of statistic measures (at least 4) is presented in 

Figure 16. 

 

Figure 16: nanoQSAR and read-across studies reporting more than 4 statistical metrics. 

5.1.4 Applicability domain definition 
The reductionist nature of nanoQSAR models associates them with limitations in terms of chemical 

structures, physicochemical properties and mechanisms within a response space119. In general, 

extrapolated predictions (inference outside of the known training dataset) are considered less accurate 

than interpolated ones (inference between known training NMs). The definition of the DoA determines 

the area of reliable predictions based on the training set and it is necessary for describing the limitations 

of the model. The degree of similarity between the NM of interest and the model training set is 

determined by different approaches, such as the leverage approach and a distance-based method. The 

applicability domain is ordinarily defined after model validation and assesses whether the predicted 
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values of the test or an external set are reliable or unreliable, thus strengthening the user’s confidence 

in the results. The DoA boundaries may vary depending on  the desired trade-off between the models’ 

extent of use and the reliability of their predictions119. 

The most common method for DoA definition, the leverage method33,45,53,55,76,77,142, provides a measure 

of the distance of the compound from the centroid of its training set. Based on the extend of 

extrapolation, the leverage ℎ for each compound is calculated from the diagonal elements of the Hat 

matrix147,148: 

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇  [19] 

The warning leverage (ℎ∗) is the critical value for a reliable prediction, which means that if a compound’s 

leverage ℎ is larger than ℎ∗ (ℎ > ℎ∗), the prediction is considered unreliable:  

  

ℎ∗ =
3𝑝

𝑁
  [20] 

Where 𝑋, is the table containing the training data, 𝑝, is the number of descriptors used in model76,77,148 

(or it is the number of descriptors used in model plus one33,119,149,150), and 𝑁, is the number of samples 

in the training set. 

The leverage approach can be visualised via a Williams plot41,60,151–154, which interpolates the 

standardised cross-validated residuals versus leverage values for each compound of the training 

set119,150.  

Moreover, another approach for defining the DoA is to use distance-based 

(Euclidean/Manhattan/Mahalanobis) methods107,130. Those methods consider similarity measurements 

based on the distances among training and test compounds compared to the predefined applicability 

domain threshold. Different modelers determine different thresholds for distance-based techniques 

because there are no clear guidelines in the field148. A common threshold calculation88,133,155 is 

presented here:  

𝐴𝐷 = 〈𝑑〉 + 𝑍𝜎  [21] 

Where 〈𝑑〉 and 𝜎 are the average and the standard deviation of the distances respectively, and 𝑍 is an 

empirical parameter value whose default value is 0.5. In case that the distance from an external 

compound to its nearest neighbour is larger than the threshold 𝐴𝐷 then the prediction is labelled as 

unreliable. 

In other studies44,70,89, the DoA threshold was calculated in a slightly different way, based again on the 

previous equation (Eq. 21). In this case, all Euclidean distances between all training samples, as well as 

the mean value of these distances, are determined first. Next, the new average value (〈𝑑〉) and standard 

deviation (𝜎) of the distances contained in the subset of training samples -with shorter distance than 

the average distance of all training samples- are calculated.  

Further applicability domain definition approaches found in the reviewed studies include the 

standardised residuals deviation130 and the probability density distribution-based method156. The 

former is a degree-of-fit method, and the latter identifies a highest density region from the total 

probability mass. Other methods are also reported such as, the training descriptors range-based 

domains35,46,72,122,139 (where untested NM descriptors’ values should be within the ranges defined by 

the training NMs in order to consider a prediction as “reliable”), the use of the standardization 

approach140,157 developed by Roy et al.158, and the multiple threshold method159. 
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Finally, in some studies the applicability domain is not defined by a specific method. Some examples 

are presented below:  

• In the study of Forest et al.104 the applicability domain is considered as the area of (hydr)oxide 
NPs. 

• In the study of Aschberger et al.102 the applicability domain is defined from the size and 
physicochemical parameters of the training MWCNTs (e.g., longer or surface modified 
MWCNTs or MWCNTs with higher content of oxidising impurities are outside the applicability 
domain). 

In most cases assessed in this review, the definition of the applicability domain was performed as part 

of the standard modelling workflow. However, a remarkable number of studies did not present the 

applicability limits of the respective models questioning the level of reliability of the produced 

predictions (Figure 17). 

 

Figure 17: nanoQSARs and read-across models and tools with a defined DoA. 

5.1.5 Model dissemination  
A harmonised, established documentation methodology with a commonly accepted terminology can 

be particularly helpful when sharing research results, given the complexity of each individual approach 

and wide range of methods, cases and implementations. This need is addressed by the development of 

standardised reporting formats that can be used as a reporting and evaluation system for 

computational models’ predictions that aims to offer industry and regulators reliable and FAIR data. 

Within this study, it was investigated whether the included in silico approaches have been accompanied 

with a documentation (through the tool interface or in supplementary files of scientific publications) 

using a specific template (e.g., the QSAR Model Reporting Format-QMRF or the Modelling Data-MODA 

generalisation reporting template). These reports were initially developed for QSAR models of chemical 

substances or for material simulations, but they can be used without major modifications for 

nanoinformatics approaches.  

The MODA reporting template  is developed by the European Materials Modelling Council (EMMC)160. 

MODA is a detailed template meant to guide users towards a complete high-level documentation of 

material models by providing all the necessary aspects for description, reproducibility, curation, and 

interfacing with other models. A simple consecutive workflow with data-based stand-alone model can 

be seen in Figure 18: 
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Figure 18: A graphical workflow scheme that should be used to document materials modelling according to MODA 
depending on the type of reported models. Image adapted from https://emmc.eu/wp-
content/uploads/2021/05/MODA_Workflow_templates_2021.pptx 

A MODA template consists of an introductory chapter for the simulation overview and three or four 

chapters according to the models’ nature. During the overview of the simulation, one must provide a 

general description of the user case without giving away any modelling information, the chain of models 

and access conditions for the software or database. The first chapter of the report refers to the aspect 

of the user case/system to be simulated, determining the material, geometry, time lapse and 

manufacturing process. When a physics-based model is reported, the second chapter indicates the 

generic physics of the model equation (e.g., entity, materials relations, simulated input) and the third 

chapter provides information on the solver and computational translation of the specifications 

(numerical solver and parameters, software tool, time step, computational representation, and 

boundary conditions). After that, during the post-processing chapter, the output is discussed, along 

with the methodologies and the margin of error. In case that a data-based model is reported, a sole 

chapter indicates the database type and the generated equation. 

An example of a model report using MODA template is presented in Figure 19. 

https://emmc.eu/wp-content/uploads/2021/05/MODA_Workflow_templates_2021.pptx
https://emmc.eu/wp-content/uploads/2021/05/MODA_Workflow_templates_2021.pptx
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Figure 19: Example of a MODA report for the multi-box aerosol model161. 

Other modelling approaches included in this review used the QMRF reporting template provided by the 

Joint Research Centre (JRC) of the European Commission.  The QMRF templates are considered 

“appropriate documentation for summarising and reporting key information on QSAR models, including 

the validation results of the studies. The information included in these reports is structured according 

to the OECD principles for the validation of QSAR models162–164: 

1. A defined endpoint, intending to ensure transparency on the predicted endpoint, usually 
referring to a physicochemical property, a biological effect or an environmental parameter 
related to the structure that can be measured (expressed as a dependent variable) and 
modelled. 

2. An unambiguous algorithm, aiming to ensure clarity in the description of the model’s algorithm, 
which is basically the form of the relationship between the descriptors and the endpoint. In this 
point, the descriptor dataset (divided in training and testing sets) and data generation, the type 
of the mathematical model (e.g., machine learning), and the model’s parameters and values 
are expected to be presented. 

3. A defined DoA, describing the limitations of the model and assessing whether the predicted 
values are reliable or unreliable. The DoA definition uses a variety of approaches (distance-
based, leverage, etc.) aiming to determine the degree of similarity between the chemical of 
interest and the model training set. 

4. Appropriate measures of goodness-of-fit, robustness and predictivity, which are in fact 
statistical parameters describing how the model performs internally and externally. Such 
statistics include the square correlation coefficient (𝑅2), RMSE, MAE for regression models and 
confusion matrices, chi-square (𝜒2), accuracy, sensitivity for classification models. 

5. A mechanistic interpretation, if possible, in order to associate the descriptor and the endpoint 
from a scientific viewpoint. 
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An example of a QMRF report for a nanoQSAR model is presented in Figure 20. 

 

Figure 20: Example of a QMRF report (first 2 pages) for a nanoQSAR model (https://zetapot.cloud.nanosolveit.eu/) that 
predicts the NMs zeta potential in water.  

In this review, the models found in Literature or repositories supplied with a MODA or QMRF report are 

depicted schematically in Figure 21. As it can be observed, the majority of the models are not 

accompanied with a standardised report. Therefore, impediments may be presented when 

stakeholders aim to reproduce or use an in silico methodology of interest. One of them is the time that 

should be spent on reading the respective scientific publication or to contact the modellers, with the 

aim to derive the modelling parameters-workflow. Later, stakeholders need to build the same model 

and validate it in terms of reproducibility, which may require a trial-and-error process till the exact same 

model is developed. This may impede stakeholders to use and consequently profit from the developed 

in silico approaches. 

https://zetapot.cloud.nanosolveit.eu/
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Figure 21: nanoQSAR and read-across models supplied with a standardised report. 

5.1.6 Quality assessment of the nanoQSAR and read-across studies 
After the analysis of the collected studies, a quality score was assigned to each one of them based on 

the extracted information. This overview process was emphasised solely on nanoQSAR and read-across 

studies, provided that they presented sufficient information for a detailed analysis. Exposure and causal 

models, PBPKs and AOPs have substantial differences in the development and validation compared to 

ML data-driven methods (e.g., the confidence in an AOP is assessed by WoE approaches165 and not with 

conventional ML validation methods), which did not allow detailed quality assessment under the 

criteria presented here. The studies related to these methods are presented separately in the next 

sections (§5.2 to 5.5). Based on the key aspects defined above, a series of criteria were devised:  

1. Availability of sufficient information to enable evaluation of the validity and suitability of the in 
silico validated alternative methods (e.g., are the train test sets provided? are all modelling 
steps and parameters included to reproduce the model?). 

2. Filtering of the descriptors or variable selection performed prior to the model development 
(e.g., to remove noisy attributes and avoid overfitting phaenomena). If variable selection is 
performed in previous publications, we considered that this criterion is met for the current 
tool/model.  

3. Information on the validation strategy (e.g., if at least one of internal/external validation is 
performed) and if the endpoint of the alternative method is well-defined and fits the model. 

4. Report of sufficient (at least 4) validation metrics-statistics to evaluate the model’s 
performance. 

5. Information on the alternative method applicability, boundaries, and gaps. 
6. Provided robustness or variability tests (e.g., internal validation, Y-randomization test) or 

sensitivity analysis of the developed methodology. 
7. Information on the mechanistic interpretation of the model or descriptors’ space assessment. 
8. Implementation potential of the models: If the model is already available (e.g., a GUI is already 

provided for the model), and or if there are possibilities of development user-friendly web 
applications based on the reported models (e.g., if the code or the equations are available 
through the publication).  

9. Information on the development and reproducibility of the alternative method, e.g., QMRF, 
MODA reports. 

10. Information on alternative methods’ data and meta-data availability (e.g., in supporting 
information files, in public databases). 
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Later, for each study and for each criterion a value of “1” was recorded in case that the relevant criterion 

was satisfied, and “0” in case that the criterion was not met. Based on the total number of satisfied 

criteria, a score value was attached. The possible scores are: 

• More than eight (8) criteria reported: 5 points, 
• Six (6) to seven (7) criteria reported: 4 points, 
• Four (4) to five (5) criteria reported: 3 points, 
• Two (2) to three (3) criteria reported: 2 points, 
• Zero (0) to one (1) criterion reported: 0 points, 
• Any extra defined criterion reported (e.g., availability of a GUI via a web-service or a stand-

alone application for the developed model or methodology, scripts availability on public 
repositories, development of general methods independent from the data, optimization and/or 
automation of the computational workflow, use of the ECHA read-across workflow, etc.): +1 
point. It is noted that as in the criterion no. 8 both already implemented and implementable 
models are considered, an extra point is given here for the models accessible via GUIs. 

The nanoQSAR and read-across methodologies in this review were evaluated according to the previous 

criteria and the scores are depicted graphically in Figure 22, Figure 23, and in Figure 24. For comparison 

purposes in Figure 22, the extra given points (if any) at each methodology are depicted in a different 

colour. Considering the number of studies that satisfy at least 4b common criteria (82%) and at least 6 

criteria (47%), we can conclude that the quality of the assessed models and of their reporting are quite 

high. A few future improvements in the model development and/or reporting can be made to satisfy 

more quality criteria. Moreover, 38% of the assessed studies included at least one extra criterion. The 

extra criteria that were satisfied are grouped and depicted schematically in Error! Reference source not 

found.. It is clear that there is a tendency toward developing user-friendly tools and publishing the 

scripts in public repositories, which should be encouraged in the future to help with the creation of 

FAIRer models. Another positive aspect that should be also supported in the future is the integration of 

the optimisation and automation procedures in some of the assessed studies and the development of 

data-independent methodologies (general methodologies that can be used with different data and 

produce different models). Finally, it is noted that only 3 out of the 63 assessed studies published post 

2017 (when the first version of the relevant guidance was published12) were based on the ECHA 

workflow for grouping and read-across. The general character of this workflow and the absence of 

practical information on assays and thresholds seems to have prevented its use in more studies.  

It should be noted at this point, that a universal and at the same time totally objective score cannot 

encompass the characteristics of all the reviewed studies and tools. As an example, for deep learning 

models, variable selection is considered unmeaningful, as the descriptors are derived directly from 

images166. Another example is the study of Serra et al.167 (also presented in §7.2.2.4) where the 

applicability domain is not explicitly defined, as the goal of their work is to visualise phenotypic entities 

under a grouping framework and not to predict a specific endpoint. This does not imply that these 

studies are inferior to other models solely based on the score value. In addition, authors may not 

include all the modelling aspects (e.g., sensitivity analysis, all robustness tests) on their publications due 

to “space restrictions” or time limitations to report their models, even if these steps are performed in 

their workflows and scripts.  Therefore, the reported score values should not be considered as a strict 

grading system but encode rather a general trend in the reported models. The development of an 

objective, as much as possible, quality assessment schema for in silico methodologies should be one of 

the future steps that relevant research should focus. 

 
b In their majority the models that fulfilled 4-5 criteria and are scored with 3, are not supplied with a standardised 
report. We consider that apart from this criterion, the quality of such models is fair.  
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Figure 22: Score of nanoQSAR and read-across studies based on the mentioned criteria. The maximum score considering the 10 criteria is 5 and it is common for all studies (blue bars). Any other 
criterion is marked separately, and the final score is presented in orange colour. The IDs on X axis correspond to the studies presented in Appendix I. 
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Figure 23: Number of nanoQSAR and read-across studies in respect to the common score values (0, 2, 3, 4, 5) based on the 
quality assessment criteria. 

 

Figure 24: Number of nanoQSAR and read-across studies in respect to the extra score values (0, 1, 2, 3, 4) based on the 
quality assessment criteria. 
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Figure 25: Number of assessed studies satisfying extra criteria apart of the 10 quality control criteria.  

5.2 Physiologically-based pharmacokinetics models 
Physiologically-based pharmacokinetics (PBPK) models are used as a tool for NM risk assessment on 

human and animal health, since they translate external exposures into toxicologically relevant internal 

doses on target organs within organisms. Eleven published PBPK approaches aiming at concentration 

estimations of different types of NMs (Figure 26) in independent body compartments were assessed in 

the present work. 

Such models in general do not allow variable selection, yet in the majority of the reviewed papers 

emphasis was placed on the variability assessment of the physiological parameters, commonly obtained 

from literature. Methodologies such as sensitivity analyses were primarily applied for either the total 

or the most influential parameters used (depending on the studied system these can be the 

phagocytizing cells NPs uptake capacity168, the diffusion and  partition coefficients of the kidneys and 

body compartments169, etc.), with the exception of Liang et al.13 who provided a sensitivity analysis for 

all mice organs. Apart from the necessary physiological parameters needed for the models’ 

development, supplemental information included data obtained in vivo, NM’s physicochemical 

parameters and experiment conditions such as exposure times. The main modelling approach of those 

papers is the use of mass balance/mass transfer equations, simulating the compartmental 

biodistribution as a system of differential/algebraic equations. Kinetic models and first-order processes 

were included in some cases. 

Tsiros et al.15 published an integrated computational framework for assessing NM biodistribution in the 

human respiratory system, after several exposure scenarios in an occupational setting (indoor 

environment). An external exposure model, calculating the NM concentrations as a function of time, is 

connected with internal biokinetics exposure models for acute and chronic timescales. In this work, a 

lung exposure model is compared to a more realistic PBPK model: the former calculated the 

accumulated NM mass in the alveolar, tracheobronchial, and head airways regions, while the latter 

computes the same results in many regions of the human body, making it more suitable for longer-

term exposure calculations. 

Titanium levels for each organ in mice were estimated by Bachler et al.14, within the application domain 

from 15 to 150 nm, according to their ability to cross the capillary wall of the organs and to be 

0 5 10 15 20 25 30 35

GUI

Scripts availability (SI or public repository)

General method

Automation

ECHA workflow

Reported protocol in data generation/data
reliability assessment

Studies per extra criteria



 
 

58 
 

phagocytosed in the mononuclear phagocyte system. Additionally, an attempt was made in 

determining the disposal mechanism of ingested TiO2 NPs. Lin et al.170 developed a PBPK model for 

predicting the amounts of gold NPs in different tissues, blood, and urine, within an application size 

domain of 13–100 nm. Animal-to-human extrapolation of NM pharmacokinetics was performed from 

mice, rats, and pigs, respectively, to humans. 

Li et al.169 developed such a model to examine the biodistribution of poly(lactic-co-glycolic) acid 

formulations with different polyethylene glycol content. Here, multivariate regression analysis was also 

performed to build the relationship between nanoparticle properties and biodistribution parameters. 

Similarly, Li et al.168 used the PBPK approach to calculate biodistribution of intravenous exposure of 

polyethylene on glycol-coated polyacrylamide (PAA-peg) NPs in rats.  

Zazo et al.171 simulated stavudine (antiretroviral drug) biodistribution after administering a 40 nm Au 

NP-based drug delivery system in rats. Another model developed by Pery et al.172 used 

pharmacokinetics to predict the absorption and distribution of technetium-labelled carbon 

nanoparticles (Technegas) in 24 body compartments, while parameters were estimated using Bayesian-

Markov chain Monte Carlo techniques. Chen et al.173 presented a PBPK model to trace zinc oxide and 

zinc nitrate in mice by calculating the partition coefficients for ZnO and Zn(NO3)2, excretion or 

elimination rates over time. 

Lastly, opposed to other papers that constructed models for specific NMs, Sahneh et al.174 developed a 

PBPK model for a broad NM range, whose goal is to predict the impact of biocorona formation kinetics 

on interspecies extrapolation of NP-biodistribution based on basal metabolic rate (BMR) and blood 

circulation time. They provided an internal validation by comparing rates between two species, 

concluding that longer circulation times cause different responses between rodents and humans in 

reaching target cells. 

Apart from Sahneh et al.174, the greater part of reviewed papers validated the developed models via 

external validation, by comparing their results to other in vivo studies or by overlaying the simulated 

concentration-time profiles with observed data. Most papers did not provide sufficient metrics and 

statistics, given the limited ability of the PBPK methodology to be validated, therefore the statistical 

significance of the models could not be evaluated. Last but not least, experimental studies on the 

behaviour of NMs in the body should be used to support the development of robust and reliable PBPK 

models and increase their confidence. 
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Figure 26: Types of NMs covered by the PBPK studies. 

5.3 Molecular dynamics simulations 
Molecular dynamics (MD) simulations are used as a means of evaluating the potential risk assessment 

of NMs computationally, as an alternative to experimental approaches. In fact, MD simulations can be 

considered as virtual experiments with an extra benefit: The gained knowledge on the nano-bio 

interactions using MD (e.g., underlying mechanism) cannot be easily obtained experimentally. As these 

virtual experiments are designed from scratch, there is a possibility of simulating systems that are not 

extensively studied experimentally (e.g., graphene in biological environments). By performing 

simulation methodologies, significant information can be extracted about NM’s interaction with 

biological molecules, cells, or lipid membranes. In fact, researchers can understand the mechanism of 

the interaction of different types of NMs with biological systems in molecular level and they can later 

predict macroscopic NM properties. Therefore, the possible toxicological effects induced by the 

interaction between NMs and biomolecules can be predicted and integrated in the SbD of novel NMs.  

This review included 28 molecular dynamics simulations, examining possible underlying mechanisms of 

NM cytotoxicity. As mentioned above several tools, such as NAMD, LAMMPS, and GROMACS, were 

utilised by the vast majority of the studies to perform MD simulations, while they were either all-atom 

or CG models. 

Is it observed (Figure 27) that most of the reviewed MD studies have developed simulations for 

graphene or graphene oxide (GO) NMs (graphene nanosheets and flakes) owing to the material’s ability 

to penetrate into the biological membrane and extract large amounts of phospholipids. However, in 

order to reduce the computational time required for simulating a biological organism and a graphene 

sheet (GS), a bilayer lipid membrane is used instead of a complex cell membrane. Tu et al.175 

investigated GS interactions with E. Coli inner and outer membranes using all-atom MD and performed 

quantum mechanics calculations on the oxidation pathways. Both types of molecular mechanisms for 

the graphene-induced degradation of E. Coli cell membranes, namely the severe insertion/cutting and 

the destructive lipid extraction, suggest that GS can induce serious membrane stress, and thus 

significantly reduce cell viability. The same system was studied by Duan et al.176 (2015) using the Lerf-

Klinowski force field for GO nanosheets, concluding that Bovine serum albumin (BSA)-coated GO sheets 

are less cytotoxic than the uncoated ones. The protein corona protects the cell membrane from being 

penetrated due to the reduction of available surface interacting with the lipid bilayer and due to 

obstacles imposed by the BSA geometry. 
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Lipid membrane (phosphatidylcholine bilayer) perturbation from graphene nanosheets was studied 

intensively. Li et al.177 determined that small pristine in the biological environment spontaneously 

penetrate the lipid bilayer starting from corners and asperities that are more likely to overcome the 

energy barrier at room temperature. Following that, they observed spreading and complete 

penetration driven by hydrophobic forces between the graphene and the bilayer core. Similarly, Zhu et 

al.178 assumed that GSs may affect the flip-flop transition of membrane lipids responsible for signalling 

events and regulating the morphology of the cell. Also, GSs could dramatically affect the distribution of 

lipid, which is presented by the average density distribution of lipid molecules in the plane of the bilayer. 

MD simulations by Dallavelle et al.179 interpreted differences in the GS navigation to the membrane 

according to their size and their functionalisation patterns. Specifically, it was revealed that edge 

functionalised GOs always lie on top of the lipid bilayer, while randomly functionalised ones penetrate 

the membrane when their size is substantially greater than that of GS that only adhere to it, thus 

improving flake penetration. Li et al.180 showed that small nanosheets sink into lipid membranes 

without changing their structures, but they could dramatically affect the fluidity of nearby lipids. As the 

size of nanosheets increases, they could cause membrane corrugation and even severe deformation of 

the overall liposome structure. 

Additionally, several studies investigated the lipid membrane of eukaryotic cells (Dipalmitoyl-

phosphatidylcholine bilayer) perturbation from GS. One of them was conducted by Puigpelat et al.181 

and showed that graphene penetration starts at corners or asperities and tends to migrate to regions 

where cholesterol molecules are sparse. Likewise, Chen et al.182 revealed that GO sheets behave 

differently than pristine graphene nanosheets, due to the hydrophilic GO surface arising from the 

oxygen-contained groups. On the contrary, GSs diffuse easily into the bilayer with its basal plane parallel 

to lipid tails, due to hydrophobic interaction between graphene and lipid tails. Chong et al.183, who 

performed MD simulations for blood proteins concluded that the protein adsorption is mainly 

enthalpically driven through strong π-π stacking interactions between GO and aromatic protein 

residues, in addition to hydrophobic interactions. Feng et al.184 showed that GOs can cut through the 

hydrophobic interface of a HIV-1 integrase homo-dimer, inducing the dissociation of the dimer by 

favourable hydrophobic interaction. 

Apart from graphene NMs, a few studies focused on carbon nanotubes (CNTs). Firstly, according to 

Zhang et al.127, the interaction affinity between the carbon-based NPs (CNPs) and the SARS-CoV-2 RNA 

fragment increased in the order of fullerenes < graphenes < CNTs. A study by Zhu et al.185 determined 

that stiff nanotubes beyond a critical length are compressed by lysosomal membranes causing 

persistent tip contact with the inner membrane leaflet, eventually leading to cell death. A few more 

studies worth mentioning are that of Melby et al.186 and Lehn and Katz187 involving gold NPs. The former 

indicated that proteins may present high affinity sites for NP binding, which can result in NP 

accumulation, while the latter showed that amphiphilic NPs can insert into the low-curvature face of a 

lipid ribbon, representative of insertion into defect-free lipid bilayers, if they first come into contact 

with solvent-exposed lipid tail protrusions.  
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Figure 27: Types of NMs covered by the simulation studies.  

Finally, in the reviewed MD studies different types of interactions of NMs with biomolecules (and mainly 

lipid membranes) were assessed. These systems of lipid bilayers-water-NM are used as a simplified 

version of a biological system comprising a complex cell membrane, a rich extracellular environment, 

and the NM structure. The study of interactions of cell-membranes and NMs are of particular interest 

for the understanding of the NMs cytotoxicity in living organisms. For instance, many of the MD studies 

listed above revealed that graphene sheets can enter the biological membrane and extract significant 

amounts of phospholipids. As a result, holes may be formed in the membrane and disturb its integrity. 

Such conclusions are valuable when studying the cell viability and cytotoxicity of NMs and can be 

included in the NMs risk assessment processes. 

5.4 Adverse outcome pathways 
As previously stated, AOPs are sequential chains of events and mechanisms, which detect molecular 

alterations happening within cells and organs. Several studies are focusing on AOPs, analysing their 

potential links to the presence of NMs, and using them as tools which enable the detection of toxicity 

effects in organisms. They present AOPs as toxicity predictive workflows that combine existing 

knowledge of NM’s toxicokinetic-toxicodynamic properties and known biological responses and 

pathways, trying to improve risk assessment of NMs for human health and environmental safety. It is 

noted that in AOP studies the DoA cannot be defined due to a lack of knowledge regarding how the 

size-associated features of NMs affect the AOP transition from the molecular initiating event to an 

ultimate AO.188 

Labib et al.189 developed a linear, simplified (hypothetical) AOP associated solely with MWCNTs-induced 

lung fibrosis (using cellular sensing of the substance as the MIE), based on transcriptomics data derived 

in vivo and demonstrated how such data can be used to generate pathway-based points of departure 

(POD). This work utilises gene expression profiles (transcriptomics data) from NM-exposed mice that 

developed pulmonary fibrosis and physicochemical properties of MWCNTs and identifies similar omics-

based perturbed pathways. Then, benchmark doses (BMDs) of apical endpoints were calculated for 

each pathway and transcriptomics BMDs were derived for each CNT, where a time-dependent trend in 

the toxicity pathways was observed. The AO of the AOP claims that excessive extracellular matrix 

deposition results in the development of lung fibrotic lesions, while the results indicate that 

transcriptomic data can be used as an alternative to epidemiological data. 

9

15

2
2

Simulations

Metal or metal oxide NMs Carbon-based NMs Polymeric Quantum Dots
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A different approach was proposed by Vietti et al.190, aiming to obtain simple and fast test methods for 

predicting the potential health hazard of CNTs. In this work, an overview of current knowledge and gaps 

on KEs involved in lung fibrosis development by CNTs was presented, with the intention of drafting an 

AOP. A large number of KEs was described based exclusively on CNT-specific literature, and their 

relationship to lung fibrosis (LF) was assessed. That lead to a complex network of known pathways, 

showing the dynamics between macro-molecular interactions (fibroblasts, macrophages, and epithelial 

cells), along with the various possibilities of developing LF induced by high aspect ratio CNTs-inhalation, 

aspiration, or injection. Also, they observed a correlation between specific physicochemical properties, 

such as length and diameter, and CNT’s fibro-genic activity. Finally, this work suggests that studying 

direct and indirect CNT’s pro-fibrotic activities can be a risk assessment tool, providing help in 

developing prevention strategies related to NM-induced diseases.  

Instead of focusing entirely on literature for a specific NM, Gerloff et al.23 combined it with known 

chemically-induced mechanistic toxicological processes. They presented how an AOP associated with 

chemical-induced toxicity can aid in describing the pathogenesis of health hazards caused by any NM, 

provided that the downstream key events remain the same. In this work, the example of liver toxicity 

induced by chemicals and NMs was used, since the liver is one of the main organs where inhaled NPs 

can usually be found. During the case study of liver fibrosis, protein alkylation leading to LF (AOP ID: 38) 

was compared and merged with lysosomal uptake-induced LF (AOP ID: 144) and it was clear that the 

NM-induced AO shares similarities with the pathway caused by chemicals especially on the major 

downstream KEs. A challenge of this methodology is how to differentiate generic key events with NM-

specific KEs, as well as the lack of MIEs explaining the initial interaction between NMs and 

molecules/biological systems, as NMs could firstly cause mechanical or physical damage to tissues and 

organs. More specifically, a single NM could in some cases initiate multiple interactions at the same 

time and in other cases they could act through non-specific interactions, causing toxicity via second 

messengers. On the contrary, the respective MIEs for chemicals are described adequately, thus it was 

proposed that NM-induced AOPs should use common KEs rather than MIEs. 

A data-driven systems toxicology workflow was developed by Grafström et al.191, combining the AOP 

approach with omics-based methods in order to screen and classify the effects of engineered NMs. A 

cell-based, HTS assay is used as a transcriptomic profiling method for ranking and prioritizing possible 

toxicants. Simultaneously, high-content analysis is used as a more specific targeted method, serving as 

a second-tier toxicity identifier for validation of the omics-based AOP-linked hypotheses. Such 

methodologies may be able to reduce the need for large-scale data for plenty of NMs required to cover 

broad dose ranges to ensure high accuracies and apply risk assessment using toxicity pathways. 

Nymark et al.192, proposed a 6-step workflow concerning NM-induced pulmonary fibrosis, resulting in 

a bioinformatics analysis of several toxicogenomics databases and a data fusion pipeline for AOP-

enrichment. This pipeline uses supervised and unsupervised/fixed protocols to both known and novel 

gene associations (64 genes) and AOP descriptions. Firstly, general schemes describing LF were 

overviewed, then disease-related information on genes were searched, and interactions between the 

identified genes were analysed using the GeneMANIA datasets. After that independent genes or 

genomic groups were analysed for enriched pathways related to functional schemes and they are linked 

with cellular responses and key events (MIEs, KEs, AEs). The final step was to integrate the generated 

data into a AOP scheme and a novel, openly accessible AOP-linked molecular pathway representing the 

effects of MWCTS exposure that uses lung fibrosis in homo sapiens as case study was presented in 

Wikipathways (https://www.wikipathways.org/index.php/Pathway:WP3624). The proposed approach 

could facilitate connecting the known genomic responses to AOPs and simplify the description of the 

disease. 

https://www.wikipathways.org/index.php/Pathway:WP3624
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In a different study by Nymark et al.193, toxicogenomics data were considered for analysing and 

understanding genomic influences of engineered NM exposure. Specifically, the proposed workflows 

by Kohonen and Grafström (also analysed above) were used as references focusing on cell-based HTS 

and high-content technology systematically applied in tiered manners for screening potential 

hazardous effects of engineered NMs. They suggest that such methodologies pose two important 

advantages: molecular details are provided which support validations of MIEs and KEs and the fact that 

toxicogenomics data enable the identification of sensitive biomarkers for targeted measurement 

identified in the AOP. This work associates high aspect ratio materials (HARMs), namely asbestos and 

MWCNTs, with DNA damage in the form of specific chromosomal fragments. Also, it is suggested that 

AOPs may implement knowledge on toxic mechanisms for engineered NMs and identify toxicity 

pathways jeopardising human health. They focus on specific AOPs associated with lung diseases, such 

as AOP-ID: 173 for lung fibrosis, AOP-ID: 148 for decreased lung function and AOP-ID: 171 for 

mesotheliomas in rats. Nymark et al., intent to study genomics data in relation to HTS data and disease 

progression, and eventually create a genomics-driven basis for classifying engineered NMs according 

to their toxic potencies. 

In the work by Halappanavar et al.31, a vague number of nearly 11000 publications focused on NM 

toxicity issued between 2000-2013 were screened, and several elimination processes were applied. For 

example, literature that did not investigate any biological systems were excluded from the study, which 

ultimately resulted in a selection of 191 studies referring to inflammation and 447 identified records 

were derived, with no further quality screening. After gathering the desired databases, the different 

biological events caused by approximately 45 manufactured NMs were identified and analysed in terms 

of NM type, endpoints, exposure details and post-exposure timepoints. Many endpoints were 

considered as KEs or even AOs. Tissue injury was the single KE selected for the case study development, 

since it is plausible, measurable, and regulatory relevant. Moreover, the whole database was re-

evaluated in order to search for in vivo and in vitro measurements. In vivo measurements include 

chronic inflammation, oxidative stress, and histopathology, while in vitro measurements include 

cytotoxicity, oxidative stress, and membrane permeability as biomarkers. It was established that NM-

induced toxicity involves an acute inflammatory component, and tissue injury is expected to be used in 

a case study for AOP development and manufactured NMs risk assessment. 

The responses of mice exposed to different NMs, including MWCNTs, nano-TiO2 and carbon black NMs, 

were investigated by Halappanavar et al.194, aiming to create an approach for NM ranking based on 

their possibility/potency to induce acute lung inflammation. Toxicogenomics data derived in vivo were 

identified with several bioinformatics tools, such as the Agilent Whole Genome microarray platform, 

and then they were translated into pathway-based BMDs. Transcriptional BMDs were estimated for all 

expressed genes and pathways associated with lungs exposed to NMs. The potency ranking was made 

according to the BMD results. Gene and pathway responses were compared between all variants 

included in the study and a further assessment of their similarities was provided. Even though specific 

MWCNTs proved to be more potent than other NMs, thus making toxicity testing more urgent for them, 

NMs did not exhibit vast differences and a clear ranking was not made. 

5.5 Other models 

5.5.1 Causal Models 
Causal modelling can be used to represent very complex relationships among a set of variables. It is 

basically a diagram that contains the relationships between dependent and independent variables. A 

variable’s influence on the dependent variable is either direct (direct effect) or transmitted through a 

different variable (indirect effect). Its ability to handle complexity and portray an issue in a simple way 

makes it a useful method for NMs’ toxicity research and risk estimation.  
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A few examples of studies using causal modelling are included in this work. Liu et al.106 used an 

association rule mining approach to identify complex relationships among different types of NP-induced 

cellular responses. They extracted knowledge from high throughput screening data (HTS), to assist in 

the discovery of toxicity mechanisms, for the development of bioactivity endpoints and for the 

establishment of NM structure-activity relationships. Relationships among cellular responses 

(RAW264.7 and BEAS-2B cells) were investigated through a workflow that included HTS data 

normalisation and identification of significantly regulated cellular responses. This model was validated 

through comparisons with existing experimental results. Also, Sizochenko et al.134 used causal inference 

methods between two nanoQSAR classification models that predict NP toxicity to human BEAS-2B and 

RAW264.7 cells. The causal interaction of the two nanoQSARs was validated using a random forest 

model for a selected group of descriptors. 

5.5.2 Exposure Models 
Exposure models are essentially assessment approaches that consider different NM dispersion and 

exposure routes to humans and the environment. Such models can indicate possible exposure risks and 

provide help in decision-making and risk-management concerning manufactured NMs. However, there 

is limited environmental exposure data which complicates model validation for the exposure models or 

the material flows and makes statistical analysis impossible. Two studies that conducted exposure 

analyses were assessed in this work.      

RedNano is an integrated simulation tool developed by Liu et al.195 for assessing the potential release 

and environmental distribution of NMs, which considers NMs’ mechanistic intermedia transport. Major 

exposure pathways are identified, and a multimedia compartmental model is developed aiming to 

estimate environmental NM concentrations and release rates in specific scenarios. Zheng et al.196 

developed an environmental exposure model as well, by creating a size-specific, dynamic, probabilistic 

material flow analysis (ss-DPMFA). This analysis considers particle size, crystalline forms, and coating 

materials, parameters that potentially influence the material’s fate, transport, and toxicity, and 

conducts a TiO2-specific hazard assessment. 

5.5.3 Dose response 
A different methodology was followed by Liu et al.197, who used dosimetry analysis on different cell 

lines (EC50 of human and murine cell lines) to rank MeOx NMs for hazard assessment. Initially, a 

sedimentation model (SP2N) was developed based on the motion of particles by Brownian diffusion for 

the calculation of the delivered dose. Then, the obtained in vitro hazard ranking was compared to the 

ranking based on the administered dose, and dose-response analyses were conducted to establish 

toxicity metrics. 

5.6 Models and methods implemented as user-friendly tools 
The development of precise models that facilitate the screening and filtering of unfavourable candidate 

NMs is prompted by the increasing demand for evaluating the characteristics and undesirable activity 

of NMs before spending time and resources on their synthesis and testing. The growing variety of 

approaches and tools for the computational assessment of NMs negative effects and properties that 

have been built over the past years serves as a good example of this. However, researchers in the field 

of nanosafety (such as experimentalists, regulatory specialists, etc.) who could directly benefit from the 

use of in silico methodologies on a daily basis, may be discouraged by the programming environments 

due to their lack of a solid background in data science, statistics, or programming, or due to time 

restrictions that may prevent them from learning to develop their own scripts and models. Following 

this need, several of the generated models -assessed in this study- are already available with a GUI as 

online applications or stand-alone software. The various technical components of the models are 
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streamlined using a GUI especially created for non-informatics experts, presenting only the essential 

components for executing the models. As a result, the group of scientists and professionals who can 

benefit from the use of computational models in the field of NMs risk assessment or novel NMs design 

is greatly expanded. The disseminated models will serve as an important tool in future computer-aided 

NM design and quality control. Table 7 presents a list of models for which a GUI is provided. A more 

comprehensive presentation of these tools is presented in Appendix II. 

Table 7: List of disseminated models and in silico methodologies as web applications or stand-alone platforms.  

Tool Availability 

A safe-by-design tool for 
functionalised nanomaterials70 

http://www.enaloscloud.novamechanics.com/EnalosWebAp
ps/CNT/  

Apellis34 https://apellis.jaqpot.org/  

BioDaph https://biodaph.cloud.nanosolveit.eu/  

Cytotoxicity (cell viability) 
prediction for metal oxide NPs155 

https://cellviability.cloud.nanosolveit.eu/  

DeepDaph99 https://deepdaph.cloud.nanosolveit.eu/  

Ecotox models75 https://ecotox.cloud.nanosolveit.eu/  

Enalos QNAR iron oxide toxicity 
platform65 

http://www.enaloscloud.novamechanics.com/EnalosWebAp
ps/QNAR_IronOxide_Toxicity/  

Facet cytotoxicity prediction88  https://facetcytotoxicity.cloud.nanosolveit.eu/  

GUIDEnano https://tool.guidenano.eu/ 

INSIdEnano167 http://inano.biobyte.de/  

Logistic regression model for the 
toxicity classification of SPIONs76 

https://app.jaqpot.org/model/DcWnWFp9GESI16R4o2av  

Lung exposure dose calculator15 https://lungexposure.cloud.nanosolveit.eu/  

Metal oxide nanoparticles 
cytotoxicity classification 

https://cytotoxicity.cloud.nanosolveit.eu/  

MS³bD zeta potential predictive 
Μodel1 

http://www.enaloscloud.novamechanics.com/nanocommon
s/mszeta/  

Nano-lazar38 https://nano-lazar.in-silico.ch/predict 

Nano Protein Corona model36 http://www.enaloscloud.novamechanics.com/nanocommon
s/NanoProteinCorona/  

NanoBio198 https://nanobio.cloud.nanosolveit.eu/  

NanoMixHamster101 https://nanomixhamster.cloud.nanosolveit.eu/  

Nanoinformatics model for zeta 
potential prediction89 

http://www.enaloscloud.novamechanics.com/EnalosWebAp
ps/ZetaPotential/  

NanoInhale15 https://nanoinhale.cloud.nanosolveit.eu/  

NanoPot198 https://nanopot.cloud.nanosolveit.eu/  

NanoProfiler199 https://sites.google.com/site/dtclabnp/ 

NanoSafer http://www.nanosafer.org/  

NanoSerpA200 https://www.cyc-ingenieros.com/nanoserpa/ 

NanoToxRadar201 https://nanotoxradar.kitox.re.kr/  

PBPK models and integration with 
the occupational exposure model15 

https://exposurepbpk.cloud.nanosolveit.eu/  

Prediction of MNPs uptake in PaCa2 
cancer cells44 

http://www.enaloscloud.novamechanics.com/EnalosWebAp
ps/QNAR_PaCa2/  

QSAR for nano-mixtures130 https://krictcsrc.shinyapps.io/TiO2_Dmagna/ 

QsarDB models202 https://qsardb.org/repository/handle/10967/119 and 
https://qsardb.org/repository/handle/10967/214 

http://www.enaloscloud.novamechanics.com/EnalosWebApps/CNT/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/CNT/
https://apellis.jaqpot.org/
https://biodaph.cloud.nanosolveit.eu/
https://cellviability.cloud.nanosolveit.eu/
https://deepdaph.cloud.nanosolveit.eu/
https://ecotox.cloud.nanosolveit.eu/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/QNAR_IronOxide_Toxicity/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/QNAR_IronOxide_Toxicity/
https://facetcytotoxicity.cloud.nanosolveit.eu/
https://tool.guidenano.eu/
http://inano.biobyte.de/
https://app.jaqpot.org/model/DcWnWFp9GESI16R4o2av
https://lungexposure.cloud.nanosolveit.eu/
https://cytotoxicity.cloud.nanosolveit.eu/
http://www.enaloscloud.novamechanics.com/nanocommons/mszeta/
http://www.enaloscloud.novamechanics.com/nanocommons/mszeta/
https://nano-lazar.in-silico.ch/predict
http://www.enaloscloud.novamechanics.com/nanocommons/NanoProteinCorona/
http://www.enaloscloud.novamechanics.com/nanocommons/NanoProteinCorona/
https://nanobio.cloud.nanosolveit.eu/
https://nanomixhamster.cloud.nanosolveit.eu/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/
https://nanoinhale.cloud.nanosolveit.eu/
https://nanopot.cloud.nanosolveit.eu/
https://sites.google.com/site/dtclabnp/
http://www.nanosafer.org/
https://www.cyc-ingenieros.com/nanoserpa/
https://nanotoxradar.kitox.re.kr/
https://exposurepbpk.cloud.nanosolveit.eu/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/QNAR_PaCa2/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/QNAR_PaCa2/
https://krictcsrc.shinyapps.io/TiO2_Dmagna/
https://qsardb.org/repository/handle/10967/119
https://qsardb.org/repository/handle/10967/214
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Quantitative read-across (Read-
Across-v4.1)59 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-
software/home#h.bus7xy9m3cbd  

Random forest model for the 
genotoxicity classification of 
MWCNTs77 

https://app.jaqpot.org/model/THPwkjY80z7yaIFNAYJR 

RiskGONE in vitro dosimetry tool203 http://www.enaloscloud.novamechanics.com/riskgone/InVit
roDosimetry/ 

Sbpot model198 https://sbpot.cloud.nanosolveit.eu/ 

Tool for assessment of human 
exposure to nanomaterials15 

https://aerosol.cloud.nanosolveit.eu/  

toxFlow37 https://toxflow.jaqpot.org/  

vythos35 https://vythos.jaqpot.org/  

ζ-regression198 https://zetapot.cloud.nanosolveit.eu/ 

6 Interviews with experts from Academia and Industry  
Based on the findings and information gathered from the literature review, we contacted the relevant 

experts to get their professional opinion about existing grouping and read-across frameworks and in 

silico models. Information was collected on the state-of-the-art of predictive tools and models 

development (including the models’ validation and applicability). Existing tools and models of relevance 

to the project not identified in the previous tasks have been collected as well. In addition, the experts’ 

opinion on the reliability of the existing in silico tools was sought, including the possible data gaps or 

missing steps to be applicable for research and regulatory purposes. Finally, the potential paths for 

future improvements in this area were also identified to make the tools regulatory compliant and 

usable.  

The aim of the interviews was to collect information on the following topics: 

a. The reliability of the grouping approaches, frameworks and models published or publicly 
available and their relevance for regulatory applications, 

b. The data gaps or missing steps to be applicable for research and regulatory purposes, 
c. The development needs to further improve this area and make these regulatory compliant and 

usable, 
d. The identification of any missing frameworks, tools and/or models of relevance to the project. 

6.1 Identification of the experts 
The research group initiated the identification of experts and stakeholders from academia, industry, 

and regulatory authorities for the surveys as early as possible. To create a first pool of experts a list of 

key authors (e.g., first and last author/corresponding author) from the publications collected during the 

review was composed. Besides the experts identified through the literature search, we also used our 

extended network of commercial work partners by participating at the EU NanoSafety Cluster 

(https://www.nanosafetycluster.eu/), the Nanotechnology Industries Association (NIA, 

https://nanotechia.org/), and BioNanoNet (https://www.bnn.at/). Furthermore, from our participation 

in various H2020/HORIZON Europe projects including on NMs fate, risk governance, development of 

tailored nanoinformatics tools, SbD, and Safe Innovation Approaches, grouping and read-across, it was 

possible to contact the nanoinformatics experts from the different consortia. 

Experts were contacted in different ways:  

• By e-mail to the key authors identified from the collected scientific publications, 

• By personal contact of the network collaborators, 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.bus7xy9m3cbd
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.bus7xy9m3cbd
https://app.jaqpot.org/model/THPwkjY80z7yaIFNAYJR
http://www.enaloscloud.novamechanics.com/riskgone/InVitroDosimetry/
http://www.enaloscloud.novamechanics.com/riskgone/InVitroDosimetry/
https://sbpot.cloud.nanosolveit.eu/
https://aerosol.cloud.nanosolveit.eu/
https://toxflow.jaqpot.org/
https://vythos.jaqpot.org/
https://zetapot.cloud.nanosolveit.eu/
https://www.nanosafetycluster.eu/
https://nanotechia.org/
https://www.bnn.at/
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• By posting an open call/invitation to LinkedIn, and 

• By the BioNanoNet and NIA newsletter to their list of partners/collaborators. 

6.2 Organisation, preparation, distribution of the questionnaires and collection of the 

data 
The procedure devised for distributing the questionnaires was designed to maximize the survey's 

impact and ensure that any filing weariness would be prevented. This procedure comprised: 

• Set clear, attainable survey goals identified from the data gathered during the review,  

• Define a clear set of questions per topic to cover the required outcomes, 

• Use the proposed questions to draft more analytical questions that were customised and on 
the purpose of data,  

• Pick the best questions that would lead to data retrieval maximisation at the optimum time 
frame (max 30 minutes for online questionnaires, and preferably no more than 15 minutes),  

• Craft questions to maximise the acquired results, with an optimal ratio of closed (e.g., yes/no, 
multiple choice, agreement/disagreement - Figure 28) to open-ended (e.g., free-text, critical, 
opinion - Figure 29) questions, 

• Ordering the questions so that the most significant questions are answered first, as there was 
a chance that people started, but did not finish the questionnaire ensuring all answers are 
captured. 

Great care was taken to ensure that the questions were as short and as simply framed as possible. To 

make sure that no prejudice entered the questions, they were evaluated numerous times. An example 

of biased and unbiased questions under the same context is:  

• Biased: Do you think that the currently available data inhibit the development of validated 
models for use in the effective and reliable testing of NMs?  

• Unbiased: What are the barriers, if any, in your opinion, for the development of effective and 
reliable models for the testing of NMs? 

 

Figure 28: Example of multiple-choice questions. 
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Figure 29: Example of free-text, opinion questions.  

In all cases, participants were clearly informed regarding the scope and desired outcomes from the 

questionnaire, ensuring anonymity of responses and the handling of confidential information. These 

included:  

• All experts were given the opportunity to fill in the questionnaire online, using a secure 
environment, fill in a Word version of the questionnaire offline or answer the questions via a 
live remote interview.  

• All experts were informed that the questionnaires would be shared with ECHA in confidentiality 
and all published responses would be anonymised removing any personal or commercial data.  

• There was the provision for questions to be flagged as confidential. In this case, the responses 
and data are separated from the non-confidential data and shared with ECHA in the annex of 
this report but will not be mentioned or published. They are used for analysis and reaching 
conclusions.  

The questionnaires were put together in close collaboration with ECHA, based on the data collected 

and critical analysis from the review. Questionnaire duration did not exceed 30 minutes, with an 

optimum duration of around 15 minutes. To retain the participant's attention on the questions, the 

questionnaire was divided into five sections, with each one focusing on a different topic: 

• Section 1 - Personal information, 

• Section 2 - In silico, grouping, and read-across methodologies, 

• Section 3 - Data availability, 

• Section 4 - Dissemination, 

• Section 5 - Gaps and future steps. 

6.3 Risk mitigation measures 
The inclusion of external stakeholders presents inherent uncertainty for conducting surveys/interviews 

and collecting the relevant information because timely and effective collaboration is challenging to 

guarantee. The time schedule was organized effectively, making use of project management expertise 

and resources to ensure prompt implementation and achievement of the desired outcomes. The 

management team took precautions when structuring the study to mitigate against risks related to 

limited stakeholder participation to minimize the impacts and assure low chance of risk manifestations 

during the implementation of the tender (  
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Table 8). 
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Table 8: Identified risks and risk mitigation measures for the surveys. 

Identified risks Severity / Possibility Mitigation measures 

Low participation 
hinders the richness of 
the obtained data 

High/Medium Preventive: Establish contacts immediately upon 
contract award, enrich experts’ database, 
establish good practices for communication, raise 
trust and experts’ engagement. 
Corrective: Use existing networks to identify 
alternative contact persons. Offer easy formats 
for collaboration. 

Stakeholder groups are 
unbalanced (e.g., 
absence of 
representative samples 
of a group, over-
representation of 
samples of a group) 

Medium/Low Preventive: Equal number of members of expert 
groups will be contacted and invited for 
participation. 
Corrective: The organisation of the experts’ 
database will allow early identification of 
under/over-representation so that expert groups 
can be balanced by inviting extra members or by 
adjusting the weighting of larger groups. 

Delays in receiving 
replies 

High/Medium Preventive-Corrective: Regular reminder e-mails 
will be sent to the experts’ network to ensure 
that they participated to the survey. 

Length of 
survey/Incomplete 
surveys submission 

High/Medium Preventive: Engagement of experts can be heavily 
influenced by the time needed to complete the 
surveys. The design of the questionnaire will 
ensure that the survey will not require more than 
30 min to be completed. 
Corrective: Information will be confirmed with 
experts during the initial tasks and the survey 
length can be reduced if deemed necessary for 
maximising participation. 

The full questionnaire can be found in the Appendix III of this report. The questionnaire was uploaded 

to EUSurvey (https://ec.europa.eu/eusurvey/home/welcome) an online survey management tool for 

producing and making public forms available. The survey can be found via this link: 

https://ec.europa.eu/eusurvey/runner/InSilicoReadAcrossApproaches  

The online survey regarding the modelling tools and read-across approaches for NMs hazard and risk 

assessment reached approximately 150 experts. The results collected from 11/11/2022 to 19/01/2023. 

The experts’ answers were analysed and synthesised under a single report, providing quantitative data 

whenever possible. They are presented in the next sections, following the same structure used in the 

distributed questionnaire. The responses of closed questions are also presented in graphical format in 

the Appendix IV of this report.  

6.4 Experts’ information 
At the reporting period, 36 experts responded to the survey, the majority of which (61%) participate in 

EU, national, or international research (nano)material related projects (Figure 107). In addition, 56% of 

the contacted experts are developing or involved in the development of models and in silico 

methodologies for NMs (Figure 111). As far as the sector they come from is concerned, the greatest 

part of the respondents (69%) is involved in Academia, and the rest of them are occupied in the 

Industry/Enterprise sector (Figure 108). 

https://ec.europa.eu/eusurvey/home/welcome
https://ec.europa.eu/eusurvey/runner/InSilicoReadAcrossApproaches


 
 

71 
 

6.5 In silico, grouping, and read-across methodologies 
According to the submitted responses, most of the experts (64%, Figure 109) are aware of existing 

grouping and read-across frameworks such as the Read-Across Assessment Framework (RAAF) 

supported by ECHA, the general framework outlined in the OECD documents, the GRACIOUS framework 

and the DF4nanogrouping framework. Many of the experts reported tools and methodologies as 

grouping/read-across frameworks (e.g., the OECD QSAR toolbox, the AOPs, the US EPA, the Jaqpot, the 

Enalos, the Apellis, the ToxTree tools, the NanoSolveIT and the SbD4Nano projects). A definition was 

also provided “the framework for grouping and read-across assumes that similar structures have similar 

activities. Based on this and an appropriate justification, data gaps for a target chemical can be filled 

with already existing information of its analogues”. 

69% of the responders claimed to have employed in silico methods or tools for research or regulatory 

purposes (Figure 110) as follows: 

• For research: 
o In different QSAR modelling studies (development of new methods for validation of 

regression and classification models and development of variable selection algorithms, 
and numerous applied and comparative studies), 

o In QSAR studies for the prediction of toxicity of NPs against various endpoints, 
o For simulations of materials, processes, and complex systems (e.g., development of 

multiscale modelling methods based on the principles of statistical mechanics to 
predict the dispersion of NPs in polymers as well as rheological, mechanical, and 
permeability properties of the resulting nanocomposites), 

o For the prediction of sorption and diffusion in nanoporous materials, such as zeolites, 
o In the risk assessment of NMs as well as of solvents (e.g., deep eutectic solvents), 
o For data gap-filling of toxicity endpoints required under chemical regulations and for 

regulatory compliance for K-REACH (The Act on the Registration and Evaluation of 
Chemicals of South Korea), 

o For the development of toxic-genomics data analysis tools (e.g., NEXTCAST, ECOSAR), 
o For relevant data analysis tasks such as data collection and curation, 
o For molecular docking applications, 
o When drafting the QSAR Report Formats (QPRF) and Read-Across based expert 

opinions on chemical’s properties/activities, 
o In different research projects. 

• For regulatory purposes: 
o For grouping of toxic chemicals, 
o In the chemical registration and evaluation in national level (e.g., in Korea), 
o Advising regulatory agencies on (chemical) hazards (e.g., Australian agency NICNAS). 

• For commercial purposes: 
o For the development of in silico methods in companies,  
o In different collaborative research projects, 
o For the development and application of computational models for regulatory purposes 

(in different regulatory frameworks such as REACH and ICH). 

The reported tools in this course are the OECD QSAR toolbox, the Discovery studio, R programming 

language, and the Chemistry Development Kit. The majority (56%) of the already developed in silico 

methodologies are reported as dataset dependent (Figure 112). The experts were also asked to provide 

information on the models and in silico methodologies they have developed or have been involved with 

developing: 

• Development of specific QSAR models for NMs with a focus on REACH-relevant properties. 
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• Development of QSAR models for nanoforms to toxicologically relevant endpoints such as 
cytotoxicity, activity against bacteria and Daphnia, based on machine learning (ML) algorithms. 

• Development of multitasking QSAR classification models (mtk-QSAR). 

• Employment of multi-objective optimisation techniques including Monte Carlo optimisation 
and artificial bee colony algorithms. 

• Development of polymer self-consistent field-based methods in one and three dimensions for 
the prediction of the free energy of NP-polymer systems in dependence of the spatial 
arrangement of NPs for the purpose of optimising NP dispersion in the matrix. 

• Development of strategies based on systematic coarse-graining, along with connectivity-
altering Monte Carlo and molecular dynamics simulations at atomistic and coarse-grained 
levels, for the prediction of glass transition temperatures, elastic constants, and permeabilities 
of polymer-matrix nanocomposites.  

• Development of Brownian Dynamics/kinetic Monte Carlo simulation methods for the 
prediction of linear and nonlinear rheological properties of entangled long-chain polymer melts 
and dispersions of NPs therein. 

• Development of toxic-genomics based models in the framework of AOPs and development of 
quantitative AOPs using Bayesian model based on experimental nanotoxicity data. 

• Mixture toxicity prediction for chemical mixtures and nano-mixtures.  

• Computational modelling of physicochemical properties and descriptors tools (e.g., atomistic 
nanodescriptors). 

• Development of multiscale models for adsorption of biomolecules on NMs surfaces (bio-nano 
interactions). 

• Development of user-friendly tools for the in silico assessment of NMs (e.g., Jaqpot, 
NanoToxRadar, NanoProfiler, NEXTCAST) and of decision support tools for the safety 
assessment and regulatory compliance of NMs. The reported tools available through a GUI are 
presented in Appendix II. 

• Development of in silico models as part of scientific projects (e.g., SbD4nano, NanoSolveIT, 
NanoBridges). 

The experts involved in modelling, are developing classical QSAR, nanoQSAR, nano-mixture QSAR and 

multi-tasking QSAR models, grouping, read-across and read-across structure–activity relationships 

(RASAR) models, PBPK models, mechanistic models, mixture toxicity prediction models and 

(quantitative) AOPs. Different modelling techniques were reported, such as random forests, neural 

networks, Bayesian models. Also, five out of the total 36 experts are involved in physics-based 

modelling (e.g., ab initio simulations) often coupled with ML. 

The reported standard validation methodologies that are employed for the developed in silico 

methodologies are in many cases in line to the recommended OECD guidelines for validating QSAR 

models and include internal and external validation, and the Y-scrambling test. The internal validation 

is employed especially in cases of limited data and consists mainly of a k-fold cross-validation scheme. 

Specifically, four experts report using k-fold (primarily 10-fold) cross validation. In external validation, 

datasets are split into training and test sets (in some cases, in one additional external set), where the 

training set is used for model development and selection, while the test/external sets are exclusively 

used for model validation. In the case of physics-based models, comparison against experiments in well-

defined systems is performed. 

Furthermore, several deterministic and probability-based metrics are employed to perform validation. 

In case of regression the following metrics are reported:  

• Coefficient of determination (𝑅2 and adjusted 𝑅2), 

• Mean absolute error (or deviation) (MAE), 
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• Mean square error (or deviation) (MSE), 

• Negative mean absolute error (NMAE), 

• Spearman's correlation coefficient, 

• Standard error (SE) and standard error of estimate (SEE), 

• Standard deviations of errors of prediction (SDEP) and root mean square error of prediction 
(RMESP), 

• Other metrics (not defined): 𝑄𝐿𝑂𝑂
2  or 𝑄𝐿𝑀𝑂

2 , 𝑅𝑚2, 𝑄𝐹1
2 , 𝑄𝐹2

2 , 𝑄𝐹3
2 . 

One of the experts also proposed the acceptability criteria presented in Table 9. We must note at this 

point that a universal rule of thumb for the appropriateness of 𝑅2 values does not exist. The type of 

the variables included in the model, how the variables are measured, and how the data is transformed 

are just a few of the factors that affect how accurate a statistical measure will be. The 𝑅2 itself neither 

provides any information on the causal relationship between the descriptors and the endpoint nor 

indicates the level of “correctness” of the model. As mentioned in the §5, a combination of statistical 

measures should be examined, as well as other tests should be applied to assess the data quality and 

the robustness of the model. Finally, the interpretation of the model is equally important.  

Table 9: Acceptability criteria based on 𝑅𝐶𝑉
2 . 

Criterion Result 

𝑹𝑪𝑽
𝟐 > 𝟎. 𝟗𝟓 Excellent 

𝟎. 𝟖𝟓 < 𝑹𝑪𝑽
𝟐 < 𝟎. 𝟗𝟓 Very good 

𝟎. 𝟖𝟎 < 𝑹𝑪𝑽
𝟐 < 𝟎. 𝟖𝟓 Good 

𝟎. 𝟕𝟓 < 𝑹𝑪𝑽
𝟐 < 𝟎. 𝟖𝟎 Satisfactory 

𝟎. 𝟕𝟎 < 𝑹𝑪𝑽
𝟐 < 𝟎. 𝟕𝟓 Acceptable 

𝑹𝑪𝑽
𝟐 < 𝟎. 𝟕𝟎 Not acceptable 

 

In case of classification the following metrics are used (mainly derived from the confusion matrix): 

• Accuracy,  

• Precision,  

• Sensitivity,  

• Specificity,  

• Selectivity, 

• F-measure,  

• MCC, 

• Balanced accuracy,  

• Receiver operating characteristic (ROC) curve - area under the curve (AUC), 

• Wilks’s lambda (λ),  

• Chi-square (𝜒2),  

• p-level. 

The reliability of the predictions is ensured in various ways. The use of curated datasets, and of large 

and balanced validation sets is the basis for the development of a reliable model. Next, the favourable 

validation metrics (e.g., metrics over 0.7) are indications of credible models. In addition to the statistical 

metrics used for the validation of the models, their applicability domain definition is equally important, 

as stated by six experts. Virtual predictions of e.g., ecotoxicity and cytotoxicity of new materials, 

comparisons to existent data from the collaborators’ network or with literature data and in general 

post-hoc experimental testing of predictions (e.g., measurement, cross-lab differences, biases, model 
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systems, comparisons with the statistical modelling error, uncertainty estimation, etc.) is contributing 

to the reliability of the developed models. Another way to ensure the reliability of the predictions is to 

apply intelligent consensus prediction in case that multiple good models for the same endpoint exist204. 

Finally, in the case of physics-based models, the reliability is ensured by comparing against experimental 

measurements from a variety of systems.  In detail, when developing “bottom-up” physics-based 

modelling methodologies, predictions from different levels of representation (atomistic, coarse-

grained, mesoscopic) for a given system are evaluated to agree, with a minimum of adjustable 

parameters. 

To assess the applicability domain of the developed methods, the plurality of experts use -depending 

on the type of endpoint (regression/classification) and the type of model (linear/non-linear)- the 

leverage approach, the Euclidean distance method, the standardisation approach, the confidence 

estimation approach, the kNN approach, the range-based approach, and the multi-dimensional 

evaluation based on the knowledge graph or they use custom made approaches coupled with 

uncertainty estimation. The opinion was expressed that in addition to the numerical calculation of the 

applicability domain, the nanoforms require a specific assessment based on the range of NMs used in 

the database. This includes the requirement of specific information (such as size, coating, etc.) and the 

limitation to chemical families (such as metal-oxides, quantum dots, metals, etc.). Different methods of 

feature selection and successive principal components analysis are also used for directly analysing 

properties of the multivariate descriptor space of the training and validation compounds. The testing 

on diverse datasets, on realistic scenarios related to use-case domains, and the application to a variety 

of systems, often in collaboration with industry is also performed to assess the applicability domain of 

the developed methodologies. Another opinion expressed that in case of small datasets the applicability 

domain is not routinely assessed.  

To interpret the developed model, nine experts reported that they study the selected descriptors and 

their contribution to the predictions. In linear models this is performed by analysing the standardised 

coefficients as measures of the relative importance-contribution of the descriptors in the model. In 

non-linear models, this is more difficult because feature importance is local rather than global. In such 

cases the descriptor analysis is performed using the sensitivities and mean values of the different 

descriptors in the model (e.g., remove one descriptor at a time, and check performance variation). In 

both cases, it is very important that the selected descriptors participating in the model are easy to 

understand and explain/interpret. In this course, the literature review can provide some evidence for 

understanding or assuming potential mechanisms of toxic action, as well as the comparison with other 

methods.  Furthermore, simulation results are extensively post-processed to reveal mechanistic 

information about the phenomena and properties of interest. Finally in cases of AOPs and mode-of-

action models the mechanistic interpretation is derived by the model itself.  

Experts involved in model development are not always providing model documentation using a specific 

template along with their models (45% of the experts are providing a standardised report, Figure 113). 

In case they do, they usually include a QMRF (QSAR model reporting format) report and, less frequently, 

a MODA (modelling data) report, a QPRF (QSAR prediction reporting format) or a custom-made report.   

6.6 Data availability 
Most experts’ opinion (69%) on data availability was that barriers do exist (Figure 114). The 68% of 

these experts emphasised three data availability aspects: quantity, sparsity, and accessibility. 

Standardised, structured, annotated, and reliable nano-related data are limited in comparison to non-

nano chemicals, and they are not always accessible (e.g., data obtained in industrial level is often 

confidential and not available in the public literature). Furthermore, there is no central repository to 
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host the data like in the case of chemical data. Data are found in different formats and there are 

consistency deficiencies between the data presented in different sources, including which parameters 

are considered relevant to identify a nanoform and how these are measured/calculated (e.g., duration 

of exposure, aggregation rate). The definition of NMs is sometimes incomprehensible (e.g., it was stated 

that in some cases NMs are confused with microplastics). Data are also difficult to retrieve in bulk 

format (e.g., using application programming interfaces, APIsc) to build automated workflows. 

Furthermore, it was highlighted by at least two experts that in some cases, data for the same endpoint 

are collected in different experimental conditions. The resulting data heterogeneity is due to the lack 

of an established test guideline for NMs, or to the absence of universally agreed ontologies, even from 

the European Commission who was unsuccessful in creating a meaningful Open Data Pilot (e.g., lack of 

clear definition of what is and is not data, data is very easy to be excluded from the Open Data 

expectations, default agreements are not compatible with Open Data practices). Also, it was expressed 

that stakeholders do not understand how and why data can or will be reused and some are afraid of 

data misinterpretation.  

Experts’ opinion was divided on the availability of datasets of sufficient quality for developing in silico 

methodologies (Figure 115). The experts that agreed on the availability of such datasets (47%), claimed 

in their majority (59%) that they are also easy to access (Figure 116). The bottlenecks regarding the 

access of such datasets are due to the lack of systematically organized, curated, and homogenous open 

data sets (e.g., deposited in repositories). Paywalls may apply and private databases still exist. To 

address the abovementioned barriers initiatives are in place to create repositories with ready-to-

modelling data such as the NanoPharos database. 

To build their models, experts in most cases (15 out of 19 experts) use published literature datasets or 

data found in public databases such as the eNanoMapper (“Nanosafety Data Interface”), the 

NanoCommons database, the nanoPharos, the PubChem, the ChEMBL, the BindingDB and the EPA (U.S. 

Environmental Protection Agency) databases, and the toxicity databases available in QSAR ToolBox. In 

other cases, experts use the data shared from experimental academic research groups whose work 

they trust or their consortia collaborators. In one case, the use of custom datasets obtained by either 

experimental or computational methods was reported.  

Data quality control is a standard procedure prior to any modelling activities for the majority of the 

experts (70%, Figure 117). Datasets are curated/cleaned by manual and automatic procedures, 

including the elimination of duplicates, of incomplete data, and of data with inconsistent results. In 

addition, experts perform source vetting, meta-data tracking, compare the data on the same system 

from different groups to the extent possible and use chemical and biological data curation according to 

the publication of Fourches et al.205. Other experts reported that they check for unit consistency, very 

sparse columns or columns that include fixed values, and calculate correlations between input 

variables. Data standardisation was also reported as a data quality control procedure. Finally statistical 

tests are reported to be performed for data quality control such as the tau test for outliers, test of 

homogeneity, and other omits-based metrics. 

Experts prefer both FAIR (findable, accessible, interoperable, and reusable) and Open Datad to develop 

their models, whereas some of them do not have any preference (Figure 118). Regarding the type of 

properties used for modelling purposes, the physicochemical properties are highly preferred, followed 

by (eco)toxicity and biological data (in vivo, in vitro). Other properties include atomistic, molecular, and 

 
c An API is a set of standardised rules that enable various applications to communicate with one another, as an 
intermediary layer, which handles data transfers across systems. 
d Open data is available without restriction, whereas FAIR data is accessible under well-defined conditions. 
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periodic table-based descriptors, as well as pathway and chemical protein interaction data, biocidal and 

drug-related properties. Nonetheless, six of the experts stated that there is no preference in a particular 

data type, as all data is essential.  

The responders agreed that data collation from different sources should be performed in case of data 

scarcity (Figure 119). Nonetheless, in this data collation process barriers should be taken into account 

such as the data compatibility and consistency when dealing with different data sources. In fact, the 

insufficient meta-data regarding the experimental conditions, methods, and protocols employed during 

the activity/toxicity testing, the differences in data quality procedures, and the lack of standardised test 

and procedures to obtain curated collections of data of adequate size create ambiguities and thus, it is 

difficult to ensure that the data from different data sources refer to precisely the same systems. In 

addition, due to the multicomponent description of the nanoforms, it is not easy to recall lists of 

compounds and to create a collection of compatible NMs to develop a model. In addition to data 

heterogeneity, data gaps and unbalanced data in terms of quantity and quality create barriers for data 

collation. The opinion was also expressed that existing modelling methods can’t cope with data from 

different sources and thus, new methods need to be devised. Nonetheless, suggestions on the methods 

were not provided.  The differences in the copyright and license terms of the different sources should 

be also considered before data collation.  

6.7 Dissemination 
Regarding the dissemination of the developed in silico methods as user-friendly workflows, most of the 

experts (78%) agree that it is necessary for the support of regulatory applications and the SbD of novel 

NMs (Figure 120). In this course, the ones who develop or already developed such methodologies -

depending on the orientation of the software- provide them as web applications or tools, stand-

alone/locally installed software or they provide the workflows in public repositories (GitHub, university 

repositories or other libraries) linked to the relevant publication. In addition, the source code of these 

tools is commonly provided (55% of the experts, Figure 123), however, this is less common for the 

corresponding APIs (40% of the experts, Figure 124). Finally, the experts involved in the development 

of computational methods usually provide the tools as free or freewaree software and in five cases 

under a subscription scheme (Figure 122). In cases of a subscription a use license is also always provided 

nonetheless, a licensing system is not always provided for free tools (Figure 121).  

The experts were also invited to comment on the level of integration of the developed in silico methods. 

Most of the responders (56%) claimed that they are not aware of any in silico methodologies integrated 

in industrial, regulatory or research level for the SbD, grouping, and read-across of NMs (Figure 125). 

Among the known already integrated in silico methodologies QSAR (such as classification 

methodologies, artificial neural networks – ANNs), quantitative adverse outcome pathways (AOPs) and 

the GUIDEnano tool were reported. More specifically, in research level the NanoSolveIT, 

NanoinformaTIX, SbD4Nano projects dealing with the NMs SbD, grouping, and read-across. It was also 

mentioned that the Australian regulatory agency NICNAS uses ML-based models. Finally, QSAR and 

read-cross methodologies for chemicals are acceptable by REACH, however this is not the case for the 

NMs (guidelines for their usage in nanoforms are not completed and published yet).  

The confidence of relevant stakeholders regarding the reliability of the developed models and in silico 

methodologies was characterised in general as quite low-medium or insufficient for regulation 

 
e Free software allows its free-of-charge use, but also gives the users the right to study, modify/change and 
distribute the original or modified versions of the software. To achieve this, access to the software’s source code 
is considered a prerequisite. On the other hand, freeware software can be also used for free, but it cannot be 
modified or redistributed.  
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compliance. It was also reported that the stakeholders’ confidence depends on the application and that 

researchers tend to have more confidence than industrial/regulatory stakeholders. Some of the experts 

also claimed that they are not aware of the level of confidence of the stakeholders to the developed 

tools, due to lack of feedback from their part. Finally, the opinion was expressed that although there is 

a potential to develop robust tools, the lack of practices (including compliance with FAIR principles for 

data and models or community standards for how to share them, transparency on the physical 

principles and approximations invoked) prevents stakeholders from using them on a routine basis.  

6.8 Gaps and future steps 
Considering the gaps on the NMs in silico investigation, the main issue that eleven experts underlined 

is the lack of sufficiently good, complete, FAIR, and representative datasets for the development and 

validation of reliable models and methods. Examples of data-related gaps communicated by the 

responders are, the scarcity of wide databases with a significant amount of standardised endpoint 

values for a range of different nanoforms and the lack of reliable and accurate experimental data (and 

meta-data) from well-defined systems (e.g., the lack of standardised methods to characterise NMs, 

physicochemically and biologically may possibly result in extremely noisy data). The lack of specific, 

efficient, and fast-to-calculate descriptors to obtain a numerical description of inorganic NMs with 

easier mechanistic interpretation, the unstandardised ontology, and the lack of data harmonisation 

were also reported by three experts.  

Apart from the data-related issues, experts exposed the problems of confidence of the stakeholders on 

the developed computational methods, leading to the gap for reliability of in silico results between in 

vitro/vivo and in silico scientists. This is due to the limited information from the developers (it is 

mentioned that they need to provide it properly -especially the physicochemical information), the lack 

of sufficient data to provide a good applicability domain, the absence of systematic vetting of models 

and their independent judgement, and the need of understanding of the in silico limitations for their 

efficient use. The lack of a strong link of the computational methods with realistic use cases is also 

reported as a confidence-related gap (e.g., the transfer to the times, costs, quality that manage the 

industry). 

Finally, regarding the development of methods for the NMs in silico assessment, some of the 

responders commented on the development of innovative ML approaches capturing more of the 

properties of “biologically relevant entity” in the model, e.g., understanding the corona structure and 

effect on biological responses, could lead to much better prediction of in vivo responses. In addition, 

they commented on the development of reliable multiscale methodologies based on physical 

understanding and judicious approximations that can take advantage of available computational 

hardware and ML tools. The groups’ definition, the feature importance for non-linear methods and the 

size of NMs per se were also reported as major limits for the development of computational tools.  

For the applicability of in silico methodologies used for bulk chemicals in the case of NMs, the experts 

in their majority (56%) believed that they are applicable or are applicable with modifications (Figure 

127). The models developed for bulk chemicals will be not applicable for NMs but the basics of QSAR 

(including multi-tasking QSAR), read-across, and PBPKs for bulk materials are applicable to NMs 

considering suitable descriptors and meta-data. ML and advanced ML methodologies as well as 

transport simulations and physics-based methods are equally applicable to bulk materials and NMs.  

Most of the proposed modifications (7 out of 11 responses) included the development of suitable 

nanodescriptors (obtained experimentally or theoretically). It is necessary to consider that nanoforms 

are not only defined by their formula but require a multicomponent identification. Then it is necessary 

to use different and specific descriptors that consider the complexity of nanoforms, encoding structural 
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information (such as size, shape, and aspect ratio), chemical composition of their components (which 

can be inorganic species, biomolecules, and organic chemicals) and how those components interact 

(corona formulations and agglomerations). In this course, dynamics according to NMs size may also 

need to be taken into account. The incorporation of other key aspects such as the experimental 

conditions should be also considered to study the property of interest thus, multi-tasking QSAR 

methods might be more useful than classical QSAR. Finally, as mentioned before, the feature 

importance for non-linear methods should be also examined.  

In their majority (72%) the experts agreed that the integration of the results of the in silico 

methodologies in the SbD of novel NMs or regulatory applications is possible (Figure 126). However, 

they emphasised some of the difficulties in this process -many of them already pointed out in the 

previous sections. To begin with, the small NM datasets -compared to the datasets of bulk chemicals- 

lead to the development of models for a limited number of NMs. In addition, it was mentioned that the 

information required to identify a nanoform should be clarified and which part of this should be 

reflected in the model nonetheless, regulatory agencies have not yet published the regulatory specifics 

of the models. As a result, over simplistic models that do not capture all relevant properties of NMs are 

developed. Methodology trust issues also arise due to the uncertainties (e.g., proper validation, DoA, 

in QSAR modelling predictions of the target activity are based on the structure which is different 

between chemicals and NMs) and lack of understanding of the methods from the stakeholders. The 

lack of different models’ web-implementation and the lack of API access are also impeding their 

integration in the SbD of NMs. Finally, validation of the models results in realistic and extended use 

cases is missing and in silico or in vitro correlation with in vivo results is considered currently unreliable. 

To reinforce the confidence of the stakeholders in reliability of modelled results and in silico 

methodologies, experts mentioned that models should be based on sufficient and qualified datasets, 

and they proposed to demonstrate their reliability by the application of examples of success in wider 

libraries of FAIR and Open data, that demonstrate strengths-limitations of each model. Appropriate 

understanding of models’ limitations should be shared with the stakeholders. The produced models 

must be systematically and thoroughly validated and all information about the model development, 

validation, etc. should be clearly presented. Moreover, providing a rigorous applicability domain would 

help the stakeholders to decide if they should trust the model or not. Providing different results 

estimated from various models would also be useful for the users to assess if there are any consensus 

results. Honest talk about the limitations of experimental work should be also performed and explicit 

guidelines from institutions will contribute to standardise the field and improve the confidence of the 

users. Five of the experts also agreed that a way to reinforce the confidence on the nanoinformatics 

models is to perform post-hoc experimental testing of the properties of interest to confirm/validate 

the predictions generated by models and to prove that the in silico predictions are accurate and useful. 

This includes, for instance, the communication of the advantages of using reliable in silico 

methodologies for at least virtual screening purposes and the presentation of success stories involving 

the design/optimisation of NMs for specific applications highlighting the leap in performance. Finally, 

the opinion was expressed that to reinforce the confidence of the stakeholders in the computational 

methodologies, it is necessary to design a transnational research project, and explore the possibilities. 

The key parameters that future in silico investigation of NMs should focus according to the experts is, 

to begin with, the collection of good and sufficiently large data sets, capturing all relevant properties of 

NMs and their distributions (e.g., the NMs lattice structure, physicochemical properties, biological 

activity and chemical reactivity, incorporation of the experimental conditions such along with their 

reliability). In addition, new descriptors should be developed that are fast and easy to calculate which 

can address larger size NPs having more than 1000 atoms. All data should be also curated, checked, 
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and approved by experimentalists, and well organised as ready-to-model datasets. The transparency 

should be also ensured and the compliance with the Open Science principles (FAIR and Open data) as 

well. The NMs systematic encoding should be also supported, by extending, for instance, the InChI and 

InChiKey representation to the nano level. Effort should be also placed on the development and 

extensive validation of the obtained models. Models should be developed considering several 

components and the inherent complexity of NMs. For example, protein coronisation is missing in the 

model development even though it is significantly impacting on NMs’ surface character. Computational 

efficiency and models’ reliability need to be improved so that in vivo predictions are enhanced without 

requiring much more in vivo testing. Finally, a link with NMs applications should be established. For 

example, a computational study on NMs should indicate clear paths for transferring the knowledge 

gained towards the specific application in which these NMs can be exploited.  

7 Case studies 
The objective of this task was to perform three case studies of grouping, read-across, and in silico 

models applied to NMs based on the findings of the literature review and the results of the 

surveys/interviews with experts. 

The case studies covered a broad range of NMs e.g., Au, Ag, ZnO, MWCNTs, organic NMs, and some 

novel and advanced NMs like 2D (e.g., graphene), high aspect ratio and multicomponent NMs.  The 

three case studies relate to different aspects of regulatory relevance such as human, or environmental 

hazard and/or exposure and applications and drug delivery, consumer products, environmentally 

benign NMs. The case studies tested the applicability of grouping and read-across frameworks and in 

silico models to exposure, hazard and risk assessment of NMs, either with distinct or a combination of 

chemistries. In silico workflows that combine different models were created that can assist with 

exposure, risk, and hazard assessment, and prediction of NMs properties useful for SbD paradigms. 

In the first case study read-across modelling is performed for assessment of the anti-infective activity 

of various carbon-based nanoparticles (CNPs). Three models were developed using three read-across 

frameworks and a dataset of interactions between CNPs (fullerenes, CNTs and graphene sheets (GS)) 

and a SARS-CoV-2 RNA fragment from the literature review. 

The second case study summarises the use of different web-applications and tools to assess diverse 

endpoints for titanium dioxide (TiO2) NMs. Here, seven web-tools were employed to predict TiO2 NM 

toxicity-related endpoints, physicochemical properties, biodistribution in different ecosystems, and 

biodistribution in humans after inhalation. The tools used in this case study were obtained from the 

literature review, and from interviews with the experts.  

The third case study was oriented towards the implementation of a Structure–Activity Prediction 

Network (SAPNet), by combining two nanoinformatics models available in the literature for the 

prediction of the NMs zeta potential in water and next in potassium chloride (KCℓ) solutions. The 

SAPNet methodology, as well as the two combined models, were retrieved during the literature review. 

7.1 Case study 1: Development of read-across models for the assessment of the anti-

microbial activity of various carbon-based nanoparticles 

7.1.1 Scope of the first case study 
This case study assesses three read-across methods or tools reported in the literature:  

• The EnaloskNN method in the KNIME (Konstanz Information Miner) platform as a node with 
enriched read-across functionalities1,70,75,88,89,155.  
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• The Apellis web application developed for training grouping/read-across models that predict 
engineered NMs toxicity-related endpoints (https://apellis.jaqpot.org/)34. 

• The Quantitative read-across (Read-Across-v4.1) software that predicts NM biological activity 
using several similarity based functions (https://sites.google.com/jadavpuruniversity.in/dtc-
lab-software/home) 59.  

The methods ranked according to their ability to generate reliable models that predict nano-related 

endpoints, and their ease of use. The various tools were evaluated using the same data so that 

comparisons between them may be drawn. Comments are also made on their lists of features.  

The rationale for the study of the effect of CNPs on a SARS-CoV-2 RNA (in brief cov-RNA) fragmentf was 

their high antimicrobial activity and their possible utility in the COVID-19 pandemic. Specifically, the 

potential of the complexation of the CNPs and the cov-RNA fragment was examined, which might lead 

to its stabilisation/inactivation. This property may also be of use in antimicrobial applications such as 

protective coatings. Molecular interactions between CNPs and the cov-RNA fragment have been 

investigated by Zhang et al.127 using molecular dynamics simulations, where each complex was 

randomly generated and optimised. They calculated the total potential energies, the Van der Waals 

energies, and the electrostatic energies of the complex, the isolated CNPs, and the isolated cov-RNA 

fragment to elucidate the mechanisms of interactions of CNPs with the cov-RNA fragment. The energy 

of the interaction (Eint) provides the driving force for complexation206. The energies indicated that CNPs 

form stable complexes with the RNA fragment (the cov-RNA fragment is adsorbed onto the CNPs).  

7.1.1.1 Dataset 

The dataset from Zhang et al.127 consisted of physicochemical and molecular descriptors for 17 different 

types of CNPs including fullerenes, carbon nanoballs, carbon nano-onion, single-walled and MWCNTs, 

nano-rope, and CNT complexes, monolayer and bilayer graphene. The target variable for the predictive 

model is the total interaction energy (Eint) from molecular dynamics simulations of the CNP with the 

cov-RNA fragment. Apart from those derived from the simulations, other physicochemical descriptors 

were calculated such as the molecular weight (MW), the overall surface area (OSA), the volume (V), the 

specific surface area (SSA), and the sum of degrees of every carbon atom (SDeg). The carbon structural 

family each CNP belongs to can be also included as a nanodescriptor. Those independent variables 

along with the calculated target values are displayed in Table 10.  

  

 
fA model molecule of frameshift stimulation element from the SARS-CoV-2 RNA genome. 

https://apellis.jaqpot.org/
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Table 10: Physicochemical descriptors and the total potential energy interaction (endpoint) between the CNPs and the cov- 
RNA fragment. CNPs with an asterisk belong to the test set. 

CNP Structure MW [g/mol] OSA 
[nm2] 

V [nm3] SSA 
[m2/g] 

SDeg Eint 
[kJ/mol] 

C20 fullerenes 240 1.86 0.23 4659 60 -138 

C36* fullerenes 432 2.68 0.40 3729 108 -108 

C60* fullerenes 721 3.81 0.65 3186 180 -80 

C70* fullerenes 841 4.33 0.75 3098 210 -96 

C240 fullerenes 2883 13.13 2.54 2742 720 -87 

C20@C60 fullerenes 961 4.34 0.82 2720 240 -100 

C20@C60@C240 fullerenes 3844 10.28 3.05 1611 960 -70 

SCNT(10,0) CNT 24164 108.58 21.86 2706 6010 -185 

SCNT(6,6)* CNT 25223 113.15 22.82 2701 6288 -153 

SCNT(28,0) CNT 70292 314.02 62.89 2690 1098 -489 

DCNT(10,0) CNT 29768 65.38 22.95 1323 1495 -245 

DCNT(6,6)* CNT 27148 61.19 21.37 1357 1454 -262 

TCNT(10,0) CNT 28070 50.58 21.94 1085 2173 -299 

NR(6,6) CNT 28266 92.50 23.58 1971 3204 -195 

SCNT(16,0)@C60 CNT 27416 109.46 22.42 2404 1091 -448 

MG graphene sheets 26764 124.22 23.03 2795 6012 -143 

BG graphene sheets 27677.57 77.18 22.65 1679 6156 -142 

In the original publication, orthogonal partial least square (OPLS) regression was used to develop 
nanoQSAR models to predict the interactions between the CNPs and the fragment. Three models were 
established and for each specific descriptors that best correlated the target Eint were identified and 
used: 

• The fullerene model used SSA as a descriptor (𝑅2=0.80, RMSE=0.485). 
• The combined CNT and graphene sheets model used OSA and SDeg as descriptors (𝑅2=0.85, 

RMSE=0.440). 
• The model for all three CNP family types used MW and SDeg as descriptors (𝑅2=0.80, 

RMSE=0.473). 

However, the model validation process was not well explained (internal or external validation) so the 

reported statistics may be misleading. Due to the lack of information, we assume that the models are 

trained and tested on the same data. 

7.1.2 Results of the first case study 
Here we describe in detail the results of the three read-across modelling frameworks using the same 

data.  

7.1.2.1 EnaloskNN read-across model 

This model aimed to quantify the relationship between physicochemical properties of the CNPs and 

their interaction energies with the cov-RNA fragment. The strength of the interaction mat correlate 

with more stable adsorption of the cov-RNA fragment on the CNPs. This model was developed using 

KNIME, an object-oriented, open-source data integration, processing, and analysis platform (see Figure 

30). Each node performs a specific task such as receiving data from a CSV file, filtering and transforming 

them, training machine learning algorithms, validating models, and visualising results. The Enalos+ 

extension nodes built on the existing KNIME infrastructure were used. 
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Figure 30: Model development workflow in KNIME Analytics platform using the Enalos+ nodes.  

7.1.2.1.1 Data pre-processing 

Prior to modelling, it is essential to pre-process the data to transform, clean, and filter them. Feature 

selection was then applied before modelling to remove less relevant variables, avoid overfitting, and 

improve the models’ predictive performance. Descriptors were assessed for correlations between them 

and with the target variable (Eint). As the data were not normally distributed, Spearman's rank 

correlation coefficient (Spearman's rho) was used to assess the sign and magnitude of contribution 

descriptors made by calculating the difference in their rank. The coefficient can range between -1, 

indicating a strong negative correlation and 1, indicating a strong positive correlation, with 0 denoting 

no correlation.  Descriptors that were correlated more than 90% with each other were removed. Rank 

correlation and correlation filter nodes in KNIME were used for variable selection. This resulted in the 

descriptor “Volume” being excluded from the model. 

Because the remaining descriptors spanned different ranges, z-score (Gaussian) normalisation was 

implemented so they laid on a similar scale and were normally distributed. This involves subtracting the 

descriptor mean from each descriptor and dividing by the standard deviation of each descriptor set. 

This creates a new set of values whose mean is zero and standard deviation is one. The dependent 

variable (Eint) was not normalised. 

The dataset was divided into training and test sets in 70:30 proportion. The Kennard-Stone algorithm207, 

which creates the two subsets that each contain representative NP samples spanning the range of the 

original set, was used for partitioning. The model was trained on the training set and its performance 

assessed using the test set. 

7.1.2.1.2 Modelling methodology 

k-nearest neighbours (kNN), a type of instance-based learning technique for regression tasks, was used 

to generate the model. kNN regression estimates the endpoint value of a new sample by averaging the 

endpoint values of the k-nearest samples in the training set. The distance between the new sample and 

all the samples in the training set is computed using a metric such as Euclidean distance. Next, the k-

nearest samples are selected based on the computed distance, and the resulting average of their 

endpoint values is used as the predicted value of the endpoint target property for the new sample. The 

optimum number of nearest neighbours was defined as k=3 and the inverse distance used as the 

weighting factor for the nearest k points. Given its enriched read-across functionalities, the Enalos+ 

kNN KNIME node was used. This displays the nearest neighbours in the training set and the calculated 

distances for each instance in the test set. The node allows definition of the overall NPs neighbouring 

space, as recommended by read-across frameworks. 
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7.1.2.1.3 Model validation 

Model validation, an essential step in a read-across/nanoQSAR studies, provides evidence on a model’s 

reliability and acceptability. For external validation, a simple technique of train-test split was 

implemented; the compounds in the training set were used for model development and those in the 

test set were used for evaluating the models’ performance.  Model prediction quality and robustness 

was validated by a several statistical measures such as the squared correlation coefficient (𝑟2) between 

the predicted and observed energies, and dispersion-based metrics such as the MAE and the RMSE (Eqs 

10, 3 and 5, respectively).  

7.1.2.1.4 Applicability domain 

The DoA of a model is defined by the ranges of each descriptor used to generate the model. It defines 

the region of input data for which the model makes accurate predictions, prediction outside of the 

domain will be less accurate. The degree of similarity between the compound of interest and the model 

training set is determined by a distance-based method. Distance-based DoA assumes that the 

predictions obtained from a model are more likely to be valid for data points that are similar to the 

training data based on the Euclidean distances among them. The predefined applicability domain 

threshold is calculated according to Eq. 21. 

Predictions where the distance from an external NM is smaller than the APD threshold value are 

considered reliable. The optimum threshold value was 1.96 and all predictions of the testing NPs fell 

inside the applicability domain (100% reliable predictions). 

7.1.2.1.5 Results 

The kNN model was developed using the training set CNPs and the CNPs in the test set were used to 

assess its predictive power. In Table 11, the k=3 nearest neighbours in the feature space and the 

distance from each one is presented, along with the actual and predicted energy values (see also Figure 

31).   

Internal and external model validation was implemented using the OECD validation principles. The 

statistical measuresg were calculated for the external test set (𝑟2 =0.95, MAE=15.4, RMSE=20.4 kJ/mol). 

Fitter models with a higher predictive power have a coefficient of determination close to 1, and small 

dispersion-based metrics. Golbraikh and Tropsha’s test208 for quality of fit and predictive ability of a 

model (see Appendix VI) was also applied, using the Enalos+ node for “Model Acceptability Criteria” 

(Figure 32). 

The combined model has slightly better validation performance than the three models in the original 

publication. Nonetheless, direct comparisons are misleading, as the modelling methods used by the 

original publication are unclear. 

To further assess the robustness of the model, Y-randomisation was applied89. As presented in Table 

12, the models developed with scrambled endpoint values demonstrated lower performance thus, the 

original model is considered robust and valid. 

  

 
g The respective formulas are presented in Appendix VI. 
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Table 11: The three closest neighbours from the training set and Eint predictions of test set CNPs.  

Testing CNP Neighbour 0 Distance N0 Neighbour 1 Distance N1 Neighbour 2 Distance N2 Eint 

[kJ/mol] 

Prediction 

[kJ/mol] 

C36 C20 0.260 C20@C60 0.283 C240 0.298 -109 -110 

C60 C20@C60 0.131 C240 0.158 C20 0.413 -80 -101 

C70 C20@C60 0.106 C240 0.136 C20@C60@C240 0.436 -96 -92 

SCNT(6,6) SCNT(10,0) 0.050 NR(6,6) 0.551 TCNT(10,0) 0.838 -153 -192 

DCNT(6,6) DCNT(10,0) 0.041 TCNT(10,0) 0.145 SCNT(16,0)@C60 0.337 -262 -274 

 

 

Figure 31: Actual vs predicted Eint values using the EnaloskNN method for the test set. 

 

Figure 32: Results of the “Model Acceptability Criteria” node using as input the EnaloskNN model. 
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Table 12: Statistic metrics on the test set for different random shuffles in a Y-randomization test repeated five times. 

Y-randomisation 𝒓𝟐  RMSE [kJ/mol] 

1 0.001 153 

2 0.004 73 

3 0.603 121 

4 0.266 100 

5 0.330 97 

Apart from having adequate predictive performance, a QSAR model should help elucidate mechanistic 

interpretations. Here, we discuss the influence of selected descriptors on the endpoint. Firstly, the 

“MW” is strongly correlated with the size of a molecule. The “structure” of each CNP account for the 

observation by Zhang et al. that the interaction affinity of the cov-RNA fragment increases in the order 

of fullerenes < graphene sheets < CNTs. The “SDeg” is a topological descriptor that represents the total 

number of degrees of non-hydrogen atoms connected to every atom of the CNP209. Surface area 

descriptors are important because nanostructures, fullerenes, CNTs and graphene have high surface to 

volume ratios that enable good adsorption and desorption 210,211. The larger the surface area of the NM, 

the greater the number of adsorption sites available for a molecule to bind to. Finally, Zhang et al.127 

report that “Volume” correlated with SSA, which explains its high correlation with other variables and 

its eventual exclusion from the dataset. 

A standardised QMRF report was created to document the model, where key information regarding 

the development, assessment and applicability of the model can be found (see Appendix V). 

7.1.2.2 Apellis model 

The same modelling process was followed next using the rest of the tools. Apellis is a web-application 

for read-across model development (https://apellis.jaqpot.org/) for NMs based on mathematical 

optimisation. During training, the application selects the most important NM properties that affect the 

endpoint to be modelled. Grouping NMs for performing read-across predictions involves the use of 

more than one similarity criterion (thresholds). The workflow applies a genetic algorithm to the 

grouping hypothesis (selected variables and threshold value) to generate the most accurate read-across 

estimations. For each query NM, neighbours are identified based on its distance from the training NMs 

and the threshold value. NMs with a distance equal or lower than the threshold value are considered 

neighbours for the query NM. Therefore, with this strategy, the number of neighbours is not fixed for 

all NMs due to local similarities that may lead to a dense or a spare neighbourhood. In fact, in cases of 

a strict threshold, no neighbours may be found for a query NM. The endpoint value is computed as the 

weighted average of the endpoint values of neighbour NMs. 

The same dataset was used as input to train the model. However, an extra pre-processing step is 

essential before using the application. Input variables must be numeric so categorical variables need to 

be transformed into binary descriptors. As the “structure” values are categorical but not ordinal, the 

one-hot encoding technique was applied.  Three binary variables were created, namely “Fullerene”, 

“CNT” and “Graphene”, and a “1” identifies the structure of each sample (Table 13).  

  

https://apellis.jaqpot.org/


 
 

86 
 

Table 13: One-hot encoding for the categorical “structure” descriptor. For each label-value a binary variable was created. 

CNPsa Structure Fullerene CNT Graphene 

C20 fullerenes 1 0 0 

C36 fullerenes 1 0 0 

C60 fullerenes 1 0 0 

C70 fullerenes 1 0 0 

C240 fullerenes 1 0 0 

C20@C60 fullerenes 1 0 0 

C20@C60@C240 fullerenes 1 0 0 

SCNT(10,0) CNT 0 1 0 

SCNT(6,6) CNT 0 1 0 

SCNT(28,0) CNT 0 1 0 

DCNT(10,0) CNT 0 1 0 

DCNT(6,6) CNT 0 1 0 

TCNT(10,0) CNT 0 1 0 

NR(6,6) CNT 0 1 0 

SCNT(16,0)@C60 CNT 0 1 0 

MG graphene sheets 0 0 1 

BG graphene sheets 0 0 1 

The following parameters were tuned:  

• Scaling of the raw data prior to modelling using the min-max normalisation, 

• Dataset partitioning using the Kennard-Stone method and a training-test set ratio of 0.7:0.3, 

• Number of chromosomes (candidate solutions) and number of generations (iterations) for the 
genetic algorithm, 20 and 50 respectively, 

• Regularisation factor for the variable selection equal to 0 (no influence in the minimisation of 
the objective function). 

The model was trained automatically, and the optimum similarity threshold was found to be 0.328 

based on six selected variables: “MW”, “OSA”, the “volume”, “SSA”, “SDeg” and “Fullerene” binary 

variable. The resulting model was used to predict the properties of the test set, which produced the 

following validation statistics:  

• 𝑄𝑒𝑥𝑡
2  = 0.93, 

• RMSE = 25.5 kJ/mol, 

• MAE = 20.6 kJ/mol. 

The application plots neighbourhood space (neighbours of test samples in the training set) in a graphical 

format. The training results and the model were downloaded for further use. All the modelling results 

are presented in Figure 33. 

All the test samples were within the DoA of the model as all samples had at least one neighbour in the 

training samples, allowing predictions to be calculated fairly accurately.  
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Figure 33: Screenshot of the modelling results using the Apellis web-application. The selected variables, the accuracy statistics, 
the predictions on the test set, and the plots for the actual vs predicted endpoint values, as well as the neighbouring space in 
heatmap format are presented. 

7.1.2.3 Quantitative read-across (Read-Across-v4.1) model 

The last assessed modelling tool is the Read-Across-v4.1 model. The Drug Theoretics and 

Cheminformatics Laboratory (DTC Lab) of the Jadavpur University (India) developed a quantitative read 

across software that predicts toxicity and biological activity of NMs or chemicals, using different 

similarity-based functions (Euclidean distance-based similarity, Gaussian kernel function similarity, 

Laplacian kernel function similarity)59. The software requires clean, ready-to-modelling data as training 

and test sets and tuning the model parameters including the similarity thresholds and the number of 

neighbours.  

Data were prepared according to the requirements of the software and training and test sets defined 

as in the first model (EnaloskNN) presented in Table 10. One hot encoding was again applied to the 

data to transform the “structure” labels into binary values. The following hyper parameters were used:  

• Gamma value for the Laplacian kernel of 1, 

• Sigma value for the Gaussian kernel of 1,  

• Number of similar training compounds of 3,  

• Distance threshold of 0.5, 



 
 

88 
 

• Similarity threshold of 0.01. 

The software generated in an excel file, predictions for each test sample, and accuracy statistics using 

the three similarity-based estimations (Figure 34).  

 

Figure 34: Screenshot of the output predictions and statistics using the DTC-Lab model, including one-hot encoding for the 
CNPs structures. 

The procedure was repeated using the same parameters and input data but omitting the one hot 

encoding. The results are slightly improved as presented in Figure 35. 

 

Figure 35: Screenshot of the output predictions and statistics using the DTC-Lab model, without one-hot encoding for the 
CNPs structures. 

DoA limits or reliability of the predictions were not provided within the tool.  

7.1.3 Discussion 
The results of the three methods are presented briefly in Table 14 and in Table 15. Direct comparisons 

can be made between the EnalosKNN model and the DTC-Lab models considering that they were 

trained and validated using the same train and test set splits. Even if the same splitting ratio and 

algorithm were used in the Apellis model, slight differences in the Kennard-Stone algorithm still led to 

different training and test sets. Conspicuously, there is no way of providing user-defined sets directly 

to the application for prediction. Thus, comparisons with the two other methods cannot be made. 

Prediction performance is best assessed by the MAE and RMSE statistics (MAE is less sensitive to 1-2 

large outliers). We observe that all three methods produce quite similar validation statistics.  
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Considering that the EnaloskNN and DTC-Lab models are trained and tested on the same data, 

consensus predictions can be made to avoid any biases inserted by the models, by averaging the 

predictions of the individual models. The consensus model results presented in Table 14Error! Not a 

valid bookmark self-reference. makes predictions of similar accuracy to those of the DTC-Lab Gaussian 

kernel model. 

Table 14: Actual and predicted Eint values in kJ/mol, according to the EnaloskNN and DTC-Lab models (without the “structure” 
variables). Consensus predictions based on the average of the EnaloskNN and DTC-Lab predictions are also presented. 
Validation statistics are also presented. 

CNP 
Actual values 

[kJ/mol] 
EnaloskNN 

[kJ/mol] 

DTC-Lab: 
Euclidean kernel 

[kJ/mol] 

DTC-Lab: Gaussian 
kernel [kJ/mol] 

DTC-Lab: 
Laplacian kernel 

[kJ/mol] 

Consensus 
[kJ/mol] 

C36 -109 -110 -109 -109 -113 -110 

C60 -80 -101 -107 -100 -102 -102 

C70 -96 -92 -87 -91 -101 -93 

SCNT(6,6) -153 -192 -158 -159 -163 -168 

DCNT(6,6) -262 -274 -249 -253 -286 -266 
 

MAE 15.4 10.8 8.2 12.9 9.1 
 

RMSE 20.4 14.0 10.5 15.6 12.2 
 

𝑄ext
2   0.96 0.98 0.99 0.97 0.98 

 

Table 15: Actual and predicted Eint values in kJ/mol, according to the Apellis model. Validation statistics are also presented. 

CNP Actual values [kJ/mol] Apellis predictions [kJ/mol] 

C60 -80 -102 

C240 -87 -92 

C20@C60 -100 -102 

SCNT(10,0) -185 -146 

DCNT(10,0) -245 -280 
 

MAE [kJ/mol] 20.6 
 

RMSE [kJ/mol] 25.5 
 

𝑄ext
2  0.93 

The EnaloskNN model, although less accurate, is easier to use because of its integration within the 

KNIME Analytics platform and user-friendly environment. Stakeholders can create visual data flows 

consisting of nodes and connections and they have flexibility to exploit all the KNIME features and tools 

for data pre- and post-processing, modelling, validation, and visualisation of the results. Therefore, 

users can have complete oversight of the analysis workflow and can tune the parameters at each step. 

The EnaloskNN node itself, apart from the kNN prediction, allows the inspection of the neighbouring 

space of NMs, a pre-requisite for the read-across framework. Nonetheless, the Enalos+ nodes are 

proprietary software and can be only used under a paid licence scheme. 

The Apellis web application also allows the read-across model development using a user-friendly 

interface. No coding is needed, and all parameter tuning is performed through menus and buttons. The 

background optimisation methods produce an automatic grouping hypothesis that leads to 

trustworthy, predictive results using one or two similarity criteria. In addition, the application performs 

variable selection, identifying the most informative descriptors for the endpoint predictions. Users can 

train and evaluate predictive read-across models using their own data through Apellis, then share the 
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generated models as ready-to-use web applications with the nano community. The Apellis tool comes 

with a variety of visualisation tools and services that display the results graphically in the form of simple-

to-understand graphs and tables (predictions, neighbouring space). However, considering that the 

background method is based on a genetic algorithm, depending on the input data and parameters, 

training can take some time to find an optimised grouping hypothesis. This is in practice a minor issue 

as the training of the model is performed once, and it can be used several times to perform almost 

instantaneous predictions. However, in hand, delays in algorithm convergence led several times to 

server timeouts and interruptions of the training requiring training to be repeated from scratch. 

Another problem was the lack of flexibility in the splitting of the input data (there is no option to provide 

user-defined training and test sets), in the use of categorical-labelled variables as descriptors (one-hot 

encoding had to be performed). Additionally, any additional robustness tests must be applied using 

other software. Nonetheless, the available functionalities through the application may be considered 

satisfactory for a non-informatics expert.  

Finally, the DTC-Lab software is a powerful tool for read-across predictions and exploration of the 

neighbouring space. However, these functionalities cannot be exploited easily as the software is 

complex and not very user-friendly. Since the software is executed serially through consecutive dialog 

boxes, if an invalid parameter value or the wrong file is introduced, the program terminates, and all 

procedures must be carried out again from the beginning. Data input format took time to understand 

as the training material was not comprehensive. An improved interface would allow for simultaneous 

display of all fields and the adjustment of the parameters in the case of an error, or in case of repetitive 

execution in a sensitivity analysis scheme. In addition, many of the results presented in the output are 

not explained. A more detailed user guide could better motivate the stakeholders to use the tool. In 

addition, all pre-processing steps including variable selection, one-hot encoding, and dataset splitting 

should be performed prior to using the tool, and any post-processing robustness tests should be 

performed using other software. Finally, the DoA or the reliability of the predictions is not provided 

within the tool. 

7.2 Case study 2: Assessment of different tools for the prediction of TiO2-based NMs’ 

endpoints 

7.2.1 Scope of the second case study 
The global NP titanium dioxide market was valued at €11.1 billion in 2020 (based on the average Euro 

– USD 2020 exchange rate), and is projected to reach €18.7 billion by 2030 based on the current (May 

2023) average Euro – USD exchange rate212. Large quantities of TiO2 NPs are used in coatings, inks and 

paints, suncreams, toothpastes, food colorants and pharmaceuticals, etc.213–215 Their band gap energies 

(3.2eV for anatase TiO2) means they absorb ultraviolet (UV) light216. To maximise absorption of visible 

light (e.g., for photocatalytic properties under sunlight) doping of TiO2 NPs with organic and inorganic 

materials reduces the activation energy and narrows the bandgaps215,216.  

TiO2 NPs have different physicochemical characteristics from their larger particle forms that alter their 

properties. The most significant negative effects of exposure to TiO2 NPs in experimental animals are 

lung cancer and pulmonary inflammatory reactions. Inhalation and dermal exposure to TiO2 NPs are 

typically the main methods of entry into the body during work exposure or product use 213. TiO2 NPs in 

personal care and household products are released to sewage and enter wastewater treatment plants. 

They impact coastal ecosystems that support fishing and leisure activities as well as phytoplankton and 

they prevent algae growth by altering membrane structure through elevated lipid peroxidation214.  

The need to assess NM properties and adverse effects before time and resource intensive synthesis 

and testing has spurred the development of computational models that can identify undesirable 
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candidate NMs. In fact, techniques and tools for the computational evaluation of NMs adverse effects 

and properties have grown considerably in recent years. However, because of lack of data science, 

statistics, or programming skills, nanosafety researchers who could benefit from these in silico 

methodologies have not adopted them to a large extent. To address this need, several models are 

available through a GUI as online apps. Using a GUI designed specifically for non-informatics specialists, 

the various technical aspects of the models are largely hidden, with only elements required for running 

the models being displayed. This allows a wider range of scientists to use computational models to 

design novel NMs design and for risk evaluation. The diverse web-tools available for prediction of TiO2 

NMs endpoints are summarized in the literature review section. The web-tools assessed in this case 

study are: 

• The QSAR for nano-mixtures tool (https://krictcsrc.shinyapps.io/TiO2_Dmagna/) for the 
prediction of toxicological endpoints of TiO2-based nano-mixtures130. 

• The NanoMixHamster tool (https://nanomixhamster.cloud.nanosolveit.eu/) for the cytotoxicity 
prediction of TiO2-based multicomponent NMs toward Chinese hamster ovary (CHO-K1) 
cells101. 

• The NanoToxRadar tool (https://nanotoxradar.kitox.re.kr/) for the cytotoxicity to A549 cell line 
and the zeta potential predictions of metal, MeOx and polystyrene cored NMs201. The tool was 
employed for TiO2-based NMs. 

• The INSIdE nano tool (http://inano.biobyte.de/) for the reveal of connections between 
phenotypic entities based on their effects on genes167. The functionalities of the tools are 
demonstrated for TiO2 NMs. 

• The lung exposure dose calculator (https://lungexposure.cloud.nanosolveit.eu/) for the 
estimation of acute regional lung-deposited dose of inhaled inorganic engineered NMs (TiO2 in 
this case) in humans. The use of the tool is combined with the multi-box aerosol model 
(https://aerosol.cloud.nanosolveit.eu/) for the assessment of human exposure to NMs in 
indoor environments161. 

• The IATA: integration of physiologically based pharmacokinetic (PBPK) model and occupational 
exposure tool for the simulation of NM biodistribution (TiO2 in this case) in humans due to 
inhalation (https://exposurepbpk.cloud.nanosolveit.eu/). The use of the tool is combined with 
the multi-box aerosol model (https://aerosol.cloud.nanosolveit.eu/) for the assessment of 
human exposure to NMs in indoor environments161. 

7.2.2 Results of the second case study 

7.2.2.1 QSAR for nano-mixtures 

This web application (https://krictcsrc.shinyapps.io/TiO2_Dmagna/) generates the predictions of two 

ecotoxicity endpoints: EC50mix and immobilisation (percentage of non-mobile and dead water fleas 

relative to  control) in D. magna exposed to TiO2-based nano-mixtures130 (Figure 36). The required input 

data are entered through dropdown menus and sliders. Depending on the type of mixture descriptors 

selected, different random forest models are employed to calculate the ecotoxicity endpoints. Model 

performance statistics is presented on the interface. In both cases, the predicted values for EC50mix or 

for the immobilisation (%) percentage of the nano-mixture are automatically presented along with 

indication of the ecotoxicity risk level in a colour-coded format (green- “low”, orange- “medium”, and 

red- “high”). The application can be used for a toxicity and safety limits assessment by studying different 

combinations of concentrations and mixtures, to reduce the cost of the environmental risk assessment. 

For each toxicity endpoint, we explored the predicted endpoint values as function of model input 

parameters range.  

 

https://krictcsrc.shinyapps.io/TiO2_Dmagna/
https://nanomixhamster.cloud.nanosolveit.eu/
https://nanotoxradar.kitox.re.kr/
http://inano.biobyte.de/
https://lungexposure.cloud.nanosolveit.eu/
https://aerosol.cloud.nanosolveit.eu/
https://exposurepbpk.cloud.nanosolveit.eu/
https://aerosol.cloud.nanosolveit.eu/
https://krictcsrc.shinyapps.io/TiO2_Dmagna/
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Figure 36: Screenshot of the user interface of the QSAR for nano-mixtures-tool. The users can tune the input parameters from 
the left-hand side of the interface and observe the predicted toxicity endpoint in the right-hand side of the interface according 
to the selected type of mixture descriptors. The performance statistics of the model and a summary of the input parameters 
are also presented within the application. The same applies for both the predicted endpoints (immobilisation and EC50mix). 

7.2.2.1.1 Immobilisation prediction 

To predict the (%) immobilisation of D. magna (acute toxicity) of the TiO2 based nano-mixtures, users 

input the core and hydrodynamic size of the TiO2 NPs, zeta potential values, the type of mixed chemical, 

its concentration (mass fraction), the type of mixture descriptors, and the exposure time of the nano-

mixtures. However, when choosing a different mixed chemical (not the default AgNO3), the model 

generates the same predictions and summary i.e., the same results were produced for all chemicals. 

Furthermore,  altering the input core, hydrodynamic sizes, and zeta potential values should not be 

performed randomly, as these values are dependent on one another142 (e.g., the NPs hydrodynamic 

size and zeta potential values depend on NPs core size). In absence of experimental data, and to remain 

in the applicability domain of the model, we used the data from the supplementary information file 



 
 

93 
 

from Trinh et al.130 (core diameter of 100 nm, hydrodynamic diameter of 143.3 nmh, zeta potential of -

7.1 mV, concentration of TiO2 NPs of 5560 μg/L, and concentration of the mixed chemical of 1 μg/L). 

Next, we assessed the immobilisation predictions as a function of the exposure time (24, 48, 72 and 96 

hours) for the two available mixture descriptors (arithmetic mean and geometric mean-based). As 

Figure 37 shows, longer exposure generate higher toxicity than in lower exposure times, in accord with 

intuition.  

 

Figure 37: Immobilisation (%) predicted values for AgNO3-TiO2 nano-mixtures, as a function of the exposure time, using the 
Dmix1 (arithmetic mean-based) and the Dmix2 (geometric-mean based) descriptors. Markers in green correspond to low risk 
levels, in orange to medium risk levels and in red in high risk levels, as generated by the web application. 

7.2.2.1.2 EC50mix prediction 

To predict the half-maximal effective concentration (EC50mix) of a mixture towards D. magna at 48 hours, 

users should select from the dropdown menus the mixed chemical and the concentration fraction of 

the TiO2 NPs in the nano-mixture. Figure 38 and Figure 39 summarize the predictions for the 

combination of different mixed chemicals in different fractions (TiO2 mole fractions of 0.05, 0.15, 0.3, 

0.5, 0.75, and 0.9) and for different mixture descriptors (arithmetic mean and geometric mean-based). 

In both cases, the nano-mixtures are safer (high EC50mix values) for lower TiO2 concentrations in the 

mixtures. We also observe that when using the geometric mean-based descriptors (Dmix2 in the 

application), the EC50mix values using the same fractions are higher (less toxic nano-mixtures). However, 

bear in mind that the predictions made using this package are mixture compound agnostic. According 

to the corresponding publication of Trinh et al.130, the use of geometric mean-based descriptors (Dmix8 

in the publication) leads to better performing models thus, the predictions of Figure 39 should be 

considered more accurate.  

 
h The hydrodynamic diameter values were not available through the original publication; thus, the value was 
retrieved from the publication of Park et al.254 to which Trinh et al.130 refer to. 
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Figure 38: EC50mix predicted values for different TiO2 based nano-mixtures, as a function of the mole fraction of the TiO2 into 
the mixture, using the Dmix1 (arithmetic mean-based) descriptors. Markers represented as crosses correspond to low risk levels, 
whereas circular markers correspond to medium risk levels, as generated by the web application. 

 

Figure 39: EC50mix predicted values for different TiO2 based nano-mixtures, as a function of the mole fraction of the TiO2 into 
the mixture, using the Dmix2 (geometric-mean based) descriptors. Markers represented as crosses correspond to low risk levels, 
whereas circular markers correspond to medium risk levels, as generated by the web application. 
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7.2.2.1.3 Discussion 

Overall, the application can be used to assess the safety limits of the nano-mixtures or to predict the 

(%) immobilisation of D. magna when experimental NP feature data are available. The intuitive 

environment allows users to make the toxicity-related endpoint predictions in a short time with minimal 

training. However, improvements are needed to expand the use of the tool by the stakeholders:  

• Although the application is briefly described in the relevant publication of Trinh et al.130, a more 
comprehensive manual is needed for stakeholders, including a detailed explanation of the input 
values. For example, the meaning of the two sliders “Expected toxicity - Immobilization (%)” 
and “Expected EC50mix (ug/L)” in the two tabs is not obvious, and changing these parameters 
did not affect the results. The colour-coded ecotoxicity risk level limits (low/medium/high) are 
also not explained or linked to a specific regulatory framework, guideline, or other literature 
source. 

• There are inconsistencies between the models described in the publication and those in the 
web application such as:  

o In the publication, mixture descriptors are calculated using eight different formulae 
(Dmix1- Dmix8) however, only two types of mixture descriptors are available within the 
tool (Dmix1 and Dmix2). Although this may not be an issue, a better explanation is needed 
(e.g., in a training manual) to avoid misunderstandings in the proper use of the 
application. In Figure 40 the differences between the publication and the application 
are presented.  

 
Figure 40: Mixture-descriptors as presented [A] in the publication of Trinh et al.130 and [B] in the relevant application. The Dmix2 
formula of the application, corresponds to the Dmix8 formula of the publication. 

o The DoA of the models is assessed in the relevant publication but not provided in the 
web application. 

o There are inconsistencies in the use of the input descriptors for each model. For 
example, the publication states that “for models predicting logEC50, mixture 
descriptors using mass fraction produced higher performance models (lower MAE and 
RMSE, and higher adj. 𝑅𝑡𝑒𝑠𝑡

2 ) than the mixture descriptors using mole fraction. In 
contrast, for models predicting immobilization, mixture descriptors using mole fraction 
gave better models than the mixture descriptors using mass fraction.” However, in the 
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application the mass fraction is used as input for the immobilisation prediction and the 
mole fraction is used for the EC50mix prediction. 

o Conspicuously, the statistics in the application are not the same as in the publication, 
as shown by Figure 41 and Figure 42. Further explanation is necessary to prevent 
misinterpretations of the results (e.g., in the case of EC50mix it is probable that the model 
in the publication is trained using log transformed EC50mix values whereas the model in 
the application is trained using the original EC50mix values). 
 

 
Figure 41: Model performance statistics for the immobilisation prediction as presented in the publication of Trinh et al.130 
(top) and in the relevant application (bottom). 



 
 

97 
 

 
Figure 42: Model performance statistics for the EC50mix prediction as presented in the publication of Trinh et al.130 (top) and in 
the relevant application (bottom). 

o Finally, as stated before, in the tab for immobilisation prediction the application produces 
the same results for all types of mixture chemicals. 

7.2.2.2 NanoMixHamster 

The NanoMixHamster101 (https://nanomixhamster.cloud.nanosolveit.eu/) is an application for 

predicting toxicity (pEC50) values of TiO2-based multicomponent NMs (Figure 43) against the adult 

Chinese hamster ovary (CHO-K1) cell line using the structure-activity prediction networks (SAPNet) 

methodology112. It consists of two main steps: the definition of the metallic NM composition (TiO2 and 

Au, Ag, Pt, or Pd) to acquire its additive electronegativity value; and the toxicity prediction based on the 

results obtained in the previous step. The summary tab includes three graphs to visualize the data used 

to develop the model and the model applicability domain (Figure 44). Finally, the dataset generator tab 

can be used to generate a new dataset of theoretical TiO2-based multicomponent NMs with mixtures 

of silver, gold, palladium, and platinum. In a next step, it is possible to generate the predictions of the 

additive electronegativity and the cytotoxicity values for all the generated dataset simultaneously.  

 

https://nanomixhamster.cloud.nanosolveit.eu/
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Figure 43: Example of the Memix-TiO2 NPs: TiO2 NPs modified with Au-Pd nanoclusters. Image is extracted from the publication 
of Stoliński et al. 2022101. 

 

Figure 44: NanoMixHamster web application interface. [A] Prediction of the additive electronegativity values (xmix) based on 
the composition of the TiO2-based multicomponent NMs. [B] Prediction of the cytotoxicity (pEC50) of the TiO2-based 
multicomponent NMs using the xmix value as input. [C] Graphical representation of the observed and predicted toxicity values, 
and applicability domain plots. 

Here, we assessed the cytotoxicity of the multicomponent NMs using different combinations and 

concentrations of metals. Figure 45 to Figure 47 summarise the results and an indication of their 

reliability. These graphs make it easy to see the correlation between the additive electronegativity (xmix) 

of the different metals in the metallic system to the pEC50 mapped by a linear nanoQSAR model 101. 

Smaller additive electronegativity values (reddish markers) generate lower pEC50 values (lower 

cytotoxicity).   
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Figure 45: Graphical representation of the predictions of the cytotoxicity (pEC50) of TiO2 multicomponent NPs modified with 
Au and Ag, Pt and Pd (referred as metal 2 and encoded in the size of the markers). The additive electronegativity values (xmix) 
are encoded in the colour scale of the markers. 

 

Figure 46: Graphical representation of the predictions of the cytotoxicity (pEC50) of TiO2 multicomponent NPs modified with 
Ag and Pt and Pd (referred as metal 2 and encoded in the size of the markers). The additive electronegativity values (xmix) are 
encoded in the colour scale of the markers. 
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Figure 47: Graphical representation of the predictions of the cytotoxicity (pEC50) of TiO2 multicomponent NPs modified with 
Pt and Pd. The additive electronegativity values (xmix) are encoded in the colour scale of the markers. 

7.2.2.2.1 Discussion 

The application is simple to use and quickly generates predictions for the additive electronegativity and 

the toxicity of TiO2-based multicomponent NMs and reliability of the latter based on the domain of the 

applicability of the model. One advantage of the application is the ability to generate simultaneous 

predictions of the additive electronegativity and the cytotoxicity values of a dataset of hypothetical 

TiO2-based multicomponent NMs modified with Au, Ag, Pt, or Pd nanoclusters. This feature allows 

screening of these NMs for adverse effects prior to their synthesis, saving time and resources during 

the design and the risk assessment of NMs. The application is described in detail in Stolińki et al.101 thus, 

a training manual is not essential or possibly, required.  

The SAPNet approach112 on which the NanoMixHamster is based involves a series of interconnected 

predictive models. This combination of models is useful and necessary to exploit all tools and models 

available in the nanoinformatics field. Also, it makes possible the direct assessment of the influence of 

specific properties to the endpoint of interest (e.g., toxicity) through this row of consecutive models. 

Therefore, in a SbD scenario, input properties can be modified properly to ensure the final NM is safe 

and has the desired properties. Nonetheless, in combining models (especially if they are trained on 

different data) researchers should be cautious about combining properties (e.g., if they are measured 

under the different conditions or protocols in the combined models), about the reproduction and 

propagation of uncertainty through the network, and about the combined applicability domains of 

these models. These ambiguities will hinder stakeholders from trusting the final prediction and using it 

in their applications. 

7.2.2.3 NanoToxRadar 

This tool (https://nanotoxradar.kitox.re.kr/, Figure 48) allows the use of the size-dependent electron 

configuration fingerprint model201 to predict NMs cytotoxicity and zeta potential through a user-friendly 

interface. Users provide the NM’s core composition (different metal, MeOx, polymeric and inorganic 

NMs), the doping parameters, coating materials, and size parameters such as NM shape (sphere or 

rod). The application predicts the cytotoxicity (more than 20% cell death of A549 cells at 100μg/mL) 

https://nanotoxradar.kitox.re.kr/
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probability value, the cytotoxicity benchmark dose (BMD5) value at a 5% benchmark response in a 

cytotoxicity assay using A549 cells, the zeta potential values, and an indication of the risk according to 

cytotoxicity probability (blue-“safe”, grey-“uncertain”, orange-“warning”).  

 

Figure 48: The NanoToxRadar tool web interface. [A] The users can tune the input parameters for the NMs of interest including 
their shape, their core, doping and coating parameters, and their size. [B] Upon execution the application presents the 
cytotoxicity probability, the cytotoxicity BMD5 and the zeta potential values of the input NM, along with an indication of their 
safety based on the cytotoxicity probability values.  

The NanoToxRadar was employed for spherical and rod TiO2-based NMs to assess their cytotoxicity and 

zeta potential as functions of their diameter and their doping material. Unfortunately, the application 

does not quantify the reliability of the predictions based on the DoA of the background models. Thus, 

we tried to remain in the model domain based on the training TiO2 NMs (supplementary data file from 

Shin et al.201). The 15 data points were for spherical TiO2 NMs with diameter 6, 7, 10, 15 and 20nm, 
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without any coating material, undoped or doped with Cl (3%) or Na (3%). The results are presented in 

Figure 49 and Figure 50. 

 

Figure 49: Cytotoxicity predicted values for different TiO2 NM, as a function of their diameter. The numerical values represent 
the predicted BMD5 value, whereas the colour of the markers corresponds to the predicted cytotoxicity probability class: the 
blue colour corresponds to safe NMs and the grey colour to uncertain ones. Different marker shapes represented different 
doping parameters. 

 

Figure 50: Zeta potential predicted values for different TiO2 NM, as a function of their diameter. Different marker shapes 
represented different doping parameters. 

7.2.2.3.1 Discussion 

NanoToxRadar is simple and straightforward to use to predict the cytotoxicity and the zeta potential of 

various NMs with different combinations of core, doping, and coating parameters. It can be used to 

predict the properties of NMs as an initial screening prior to their experimental evaluation or in an SbD 

study prior to their actual synthesis. A major flaw of the tool is the absence of reliability estimates for 

the predictions based on the applicability domain of the background models. According to the source 

publication201, the three models (two for the cytotoxicity predictions and one for the zeta potential 

prediction) were not trained on the same data, thus, different applicability domains exist for each 
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model. Additionally, polystyrene NMs were not included in the BMD5 training set but the model makes 

predictions for such NMs. Clearly, a reliability indication is needed for each predicted endpoint. 

Paradoxically, the applicability domain of each model is assessed in the publication but is not included 

in the tool. Moreover, the tool does not have a training material and it is not described well in the 

relevant publication of Shin et al.201. The stakeholders will require extra information on how to interpret 

results, and how the colour-coded cytotoxicity probability limits are derivedi before using the tool. 

These improvements are required before its use in real-case scenarios and before it is trusted by 

stakeholders.  

7.2.2.4 INSIdE nano 

The INSIdE nano web tool (http://inano.biobyte.de/) depicts and highlights connections between 

phenotypic entities, based on their effects on genes, for four categories of elements (NMs, drugs, 

chemicals and diseases)167. For each category, a list of associated genes is provided, derived from 

different sources. For NMs, gene expression data in different human cell types exposed to diverse NMs 

are available from the NanoMiner project. For drugs, gene expression data for drug treatments was 

retrieved from the Connectivity Map (https://www.broadinstitute.org/connectivity-map-cmap). Finally, 

for diseases and chemicals, gene interaction data was extracted from the Comparative Toxicogenomics 

Database (http://ctdbase.org/) and was manually curated.  

The tool provides two ways to analyse the data set: visualisation of the phenotypic network; and 

visualisation of clustering of the phenotypic entities/categories of elements. For NMs, network 

construction is based on an ordered list of genes resulting from differential expression analysis. Pairwise 

similarity is then calculated between all entities and the respective values are used to build a weighted 

undirected network, where the nodes are the phenotypic entities and the similarity between them 

represents the weight of the edge (line). Positive and negative correlations between nodes-entities are 

encoded by the colour of the edges. Serra et al.167 highlighted the remarkable association of metal and 

MeOx NMs and neurodegenerative disorders. The cluster analysis panel allows investigation of how the 

four entities are grouped and which genes are most important to each. In addition, query analysis 

(simple or conditional) is possible through the tool. This functionality allows the users to examine 

connections of a specific element (e.g., a NM), highlight its position in the ranking of neighbours, it 

indicates whether the connection is known in the literature, and specifies the connection distributions. 

Here, the different functionalities of the INSIdE nano tool are demonstrated for TiO2 NMs.  

7.2.2.4.1 Browse 

The user can view and interact with the network using the network browser tool. Our analysis began 

by using term TiO2 in the search field of the network browser, then selecting for visualisation the top 

5% of the interactions with diseases. The tool produces a network of the interactions between the TiO2 

NMs and the 7 diseases included in the top 5% of interactions. Positive correlations/interactions 

between nodes (TiO2 NMs and diseases) are highlighted in red colour, whereas negative interactions in 

green colour. The weight of the edges between nodes indicates the degree of correlation between the 

nodes. By studying the results, we can derive meaningful conclusions for the query interactions e.g., 

that the TiO2 NMs have negative interactions (green colour) on capillary leak syndrome (a 

cardiovascular disorder) and positive interactions (red colour) with the Tourette syndrome (a 

neuropsychological disorder) (Figure 51).  

 

 
i The respective model as presented in the publication of Shin et al.201 is trained on a dataset with binary labels 
for the cytotoxicity class.  

http://inano.biobyte.de/
https://www.broadinstitute.org/connectivity-map-cmap
http://ctdbase.org/
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Figure 51: Results of the network browser for the top 5% interactions of TiO2 NMs with diseases. Positive and negative 
interactions are colour coded (red and green respectively). By clicking on the different nodes, a pop-up window is presented 
with information about the node.  

7.2.2.4.2 Simple query 

To further analyse the top 5% interactions of the TiO2 NMs with the four categories of elements, a 

simple query was performed. The above parameters were inserted in the respective field and the 

resulting connections were displayed separately for the different groups of elements (see Figure 52). 

Again, the positive and negative interactions are colour-coded and, by clicking on the different 

elements, an information pop-up window is presented with further information and links. If the 

interactions-connections are known in literature, this is highlighted in a separate column. Additional 

data on the connection distribution and weights are presented in the next tabs (Figure 53 and Figure 

54). However, if we insert the same parameters used in the “Browse” functionality above, we observe 

that TiO2 NMs have positive interactions (red colour) with both the Tourette’s and the capillary leak 

syndrome (Figure 52). This inconsistency must be investigated further. 
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Figure 52: Simple query results for the top 5% interactions of TiO2 NMs with chemicals, drugs, diseases and other NMs. Positive 
and negative interactions are colour coded (red and green respectively). By clicking on the different elements, a pop-up 
window is presented with information about the element. The results can be printed or exported in spreadsheet file format.  

 

Figure 53: Simple query results for the top 5% interactions of TiO2 NMs with chemicals, drugs, diseases and other NMs. The 
distribution of the positive (red) and negative (green) interactions considering the elements of each category is presented in 
graphical format.  



 
 

106 
 

 

Figure 54: Simple query results for the top 5% interactions of TiO2 NMs with chemicals, drugs, diseases and other NMs. The 
weights distribution for each category is presented in boxplots. 

7.2.2.4.3 Conditional query 

A conditional query analysis was performed next that included TiO2 NMs, all drugs in the training 

datasets, and Tourette’s and capillary leak syndrome (Figure 55). Again, the top 5% interactions 

between elements were selected, and the minimum number of connected elements (neighbours) and 

of the elements in the cliques was set to 2. The cliques in graph theory are sub-graphs of the original 

network where all the nodes are connected to each other. Here, there are structures of three or four 

heterogeneous nodes (a disease, a drug, a chemical and an ENM) completely interconnected by strong 

patterns of similarity or anti-similarity167. 

  

Figure 55: Input parameters for the conditional query analysis. 

The generated results by the INSIdE nano tool are presented in Figure 56 to Figure 58. The clique type 

list is presented first, based on the categories of elements that they contain. By selecting one of the 

cliques, additional information is presented such as pathway enrichment analysis results and gene 

enrichment analysis (Figure 56). The network can also be displayed (Figure 57) and users can zoom in 

to specific regions to inspect results, as the network may comprise a large number of branches.  Finally, 

the stakeholders can visualise the number of connections between the elements in the different 
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categories with a bubble plot: larger bubbles indicate more connections of two objects across the 

different cliques. For example, in Figure 58 we can observe the connections between the studies 

diseases and the drugs across the different cliques. 

 

Figure 56: Results of the conditional query analysis (clique information) using the input parameters of Figure 55. 

 

Figure 57: Results of the conditional query analysis (network) using the input parameters of Figure 55. 
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Figure 58: Results of the conditional query analysis (statistics) using the input parameters of Figure 55. 

7.2.2.4.4 Cluster analysis 

The tool also provides cluster analysis to investigate different groups of NMs. TiO2 NMs were chosen 

from the elements categories, and a list of up- and down-regulated genes from the differential 

expression analysis167 are presented (Figure 59). The Gene Card webpage for each gene can be accessed 

by clicking on its name. 

7.2.2.4.5 Discussion 

The INSIdE nano app offers many ways to explore a network of interactions between NMs, drugs, 

chemicals, and diseases. This network was built based on the systematic analysis of transcriptional 

mechanisms-of-action for these four entities. Due to its complexity, the use of the tool is not 

straightforward (like other tools in this review) and a thorough study of the instructions is required to 

understand how to exploit the different functionalities. The tool is supplemented by a comprehensive 

tutorial/help page that can guide stakeholders. However, some terms used, such as “cliques”, should 

be described in simpler language.  In addition, the publication states that positive and negative MoA 

similarities in the interaction network (e.g., Figure 51) imply that genes are altered in the same or 

opposite direction, respectively, by both the phenotypic perturbations. Nonetheless, the lack of more 

explanation leaves room for “intuitive assumptions” that may be false, such as the belief that “positive” 

interactions between elements are “beneficial” and “negative” interactions are “detrimental”.  

This application permits stakeholders not familiar with omics data analysis and integration to obtain 

results of different studies (e.g., gene expression data from cells exposed to NMs and from drug 

treatments, chemical-gene and disease-gene interactions data) and use information encoded in the 

data without any pre-requisites. The tool can be also used in a read-across framework because the 

networks generated are based on pairwise similarities between the different phenotypic entities under 

the same property space. Nonetheless, the challenge for this application is to ensure that it won’t be 

outdated. As new data on the NMs mode-of-action are produced, it should be analysed and integrated 

into the tool to guarantee utility over time. A revision of the tool may be also needed to track down and 

correct the errors and inconsistencies (such as that mentioned earlier). 
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Figure 59: Cluster analysis results for the NMs category of elements.  

7.2.2.5 Tool for assessment of human exposure to nanomaterials (multi-box aerosol model) 

The multi-box aerosol model (https://aerosol.cloud.nanosolveit.eu/) is an easy-to-use web application 

for assessment of human exposure to NPs in indoor environments. It estimates the NP concentration 

in an indoor environment, e.g., a workplace laboratory or office, by dividing the space into smaller areas 

(near and far from the NPs emission source)161. The prediction depends on the geometrical 

characteristics of the room; therefore, the computational domain must be defined by the user 

(geometrical layout of the room, Near Field (NF) and Far Field(s) (FF), cuboid or cylindrical). A sketch of 

the computational domain is provided, based on the user entries. After that, in the scenario description 

section, the user needs to define the NPs emission rate either by choosing a specific scenario or by 

providing a distributed emission rate. Then, simulation inputs such as the modelling time, the time the 

source is active, and the number of repetitions must be specified, and a change of physical parameters 

(density, pressure, temperature, friction velocity) can be given. The output of the simulation consists 

of the evolution of the NP concentration in a particular or in all areas for different NP sizes (bins).  

https://aerosol.cloud.nanosolveit.eu/
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The multi-box aerosol tool was not demonstrated stand-alone but was integrated into a broader risk 

assessment scenario. Specifically, we predicted the biodistribution of TiO2 NMs in the human 

respiratory system and other regions of the human body following exposure to NMs in indoor 

environments as part of an integrated approach to testing and assessment (IATA)j. This was achieved 

with the combination of three different tools that address different aspects of this scenario. The multi-

box aerosol model is used to predict indoor air concentrations of NMs, the lung-exposure model 

predicts the accumulated NM mass in the human respiratory system, and the exposure PBPK model 

predicts the NM accumulated mass in different body compartments (Figure 60).  

 

Figure 60: Schematic representation of the combination of different tools to simulate the biodistribution of TiO2 NMs in the 
human respiratory system and other regions of the human body following exposure to NMs in indoor environments. 

To predict the airborne concentration of the TiO2 NMs in an indoor environment, the computational 

domain is a closed room where the NMs source is located in the NF area and the FF area is considered 

the exhaust area of the system. The room size is 4 × 4 × 4 m3 and the NF size is 1 × 1 × 1 m3. The flow 

rate between NF and FF is set to 10 m3/min and the exhaust flow rate is set to 5 m3/min. From the 

available NMs, TiO2 with a geometric mean diameter of 22nm and density of 4230kg/cm3 was selected. 

A 6-hour work shift (1800s × 12 repetitions) was selected, because larger modelling times lead to server 

timeout. The NMs source was selected to be active for 15 minutes (900s) every time. The input 

parameters and the generated airborne distribution are presented in Figure 61. After the execution of 

the tool, the results were downloaded for use in the lung exposure model that predicts the deposited 

dose of the NMs in various parts of the human respiratory system, and in the PBPK model that predicts 

NM concentrations throughout the body. 

 
j Integrated approaches to testing and assessment (IATA) provide a framework for combining information from 
different sources (experimental, in silico) for hazard characterisation of chemicals, including NMs, based on a 
weight of evidence approach. 
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Figure 61: Input parameters of the multi-box aerosol model.  

7.2.2.5.1 Discussion 

The prediction of the distribution of NMs in indoor environments through a user-friendly interface and 

its level of integration in other tools makes the multi-box aerosol model a valuable aid in risk and life 

cycle impact assessment of health effects of NMs. However, the model is slow to execute (e.g., for 

results presented here with 6 modelling hours, approximately ten computational/running hours were 

requiredk) and a major problem arose when longer simulation times were requested. Server timeouts 

and process interruptions occurred when longer modelling times were set as input, leading in loss of 

results and necessitating starting the computations again. Next versions of the application should focus 

on reducing computational times and on other functionalities useful for stakeholders. For example, a 

bar visualising the progression of the calculations would permit the users to understand the duration 

of the process. Another feature that allowed pausing or checkpointing of calculations, would be very 

useful, allowing restarting of stalled calculations.  

7.2.2.6 Lung exposure dose calculator 

The lung exposure dose calculator (https://lungexposure.cloud.nanosolveit.eu/) uses a biokinetics 

model to estimate short-term regional lung-deposited dose of inhaled inorganic engineered NPs in 

humans following acute exposure (e.g., the result of an accident)161. The first step is to provide data for 

the concentration of NPs over time using three alternative models for NP diameter distribution 

(theoretical, template, or multi-box aerosol). Next, two models can be used for the calculation of NP 

deposition in the human respiratory system:  the international commission on radiological protection 

model (ICRP); and an advanced ICRP model. Users must provide detailed parameter values for the 

exposed person when the advanced ICRP model is selected. The web-service then calculates the acute 

doses (in mg) for three regions of the respiratory system (alveolar, tracheobronchial, and head airways). 

Here, the results of the multi-box aerosol calculations were used to describe the concentration of NMs 

over time. Then the simple ICRP model was employed to compute the NM deposited dose in the human 

respiratory system after 4 and 6 hours of exposure (14400s and 21600s respectively) in the NF and the 

FF (Figure 62). The results for different workers and activity levels are presented in   

 
k The web application was accessed through a personal computer (processor: AMD Ryzen 7 5800H with Radeon 
Graphics 3.20 GHz, RAM: 16 GB). The web application calculations are performed on a server.  

https://lungexposure.cloud.nanosolveit.eu/
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Table 16 and  

Table 17 and depicted schematically in Figure 63 and Figure 64. Clearly, most of the NM mass is 

deposited in the head airways (nose, nasal cavity, and pharynx) and is lower for sedentary exposure 

than during heavy exercise. 

 

Figure 62: Deposited TiO2 NMs (22nm) in the human respiratory system as produced by the lung exposure dose calculator 
using data for the airborne concentration of the NMs in the indoor environment from the multi-box aerosol model.  
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Table 16: Deposited dose in the respiratory system in the NF using the simple ICRP model. 

Worker Respired volume rate (L/min) Exposure time [s] 
Acute dose (mg) 

Alveolar Tracheobronchial Head airways 

Female 6.50 (Sitting) 14400 2.39E-7 8.16E-7 2.02E-6 

Female 20.83 (Light exercise) 14400 7.67E-7 2.62E-6 6.46E-6 

Female 45.00 (Heavy exercise) 14400 1.66E-6 5.65E-6 1.40E-5 

Male 9.00 (Sitting) 14400 3.31E-7 1.13E-6 2.79E-6 

Male 25.00 (Light exercise) 14400 9.21E-7 3.14E-6 7.75E-6 

Male 50.00 (Heavy exercise) 14400 1.84E-6 6.28E-6 1.55E-5 

Female 6.50 (Sitting) 21600 3.61E-7 1.23E-6 3.04E-6 

Female 20.83 (Light exercise) 21600 1.16E-6 3.95E-6 9.75E-6 

Female 45.00 (Heavy exercise) 21600 2.50E-6 8.53E-6 2.11E-5 

Male 9.00 (Sitting) 21600 5.00E-7 1.71E-6 4.21E-6 

Male 25.00 (Light exercise) 21600 1.39E-6 4.74E-6 1.17E-5 

Male 50.00 (Heavy exercise) 21600 2.78E-6 9.48E-6 2.34E-5 

 

Table 17: Deposited dose in the respiratory system in the FF using the simple ICRP model. 

Worker Respired volume rate (L/min) Exposure time [s] 
Acute dose (mg) 

Alveolar Tracheobronchial Head airways 

Female 6.50 (Sitting) 14400 2.37E-07 8.10E-07 2.00E-06 

Female 20.83 (Light exercise) 14400 7.61E-07 2.60E-06 6.41E-06 

Female 45.00 (Heavy exercise) 14400 1.64E-06 5.61E-06 1.38E-05 

Male 9.00 (Sitting) 14400 3.29E-07 1.12E-06 2.77E-06 

Male 25.00 (Light exercise) 14400 9.13E-07 3.12E-06 7.69E-06 

Male 50.00 (Heavy exercise) 14400 1.83E-06 6.23E-06 1.54E-05 

Female 6.50 (Sitting) 21600 3.58E-07 1.22E-06 3.02E-06 

Female 20.83 (Light exercise) 21600 1.15E-06 3.92E-06 9.67E-06 

Female 45.00 (Heavy exercise) 21600 2.48E-06 8.46E-06 2.09E-05 

Male 9.00 (Sitting) 21600 9.61E-08 1.69E-06 4.18E-06 

Male 25.00 (Light exercise) 21600 1.38E-06 4.70E-06 1.16E-05 

Male 50.00 (Heavy exercise) 21600 2.76E-06 9.40E-06 2.32E-05 
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Figure 63: Calculated TiO2 NM deposited doses in the different parts of the human respiratory system after 4 and 6 hours of 
exposure in NF. Solid bars refer to female whereas shaded bars refer to male workers. 

 

Figure 64: Calculated TiO2 NM deposited doses in the different parts of the human respiratory system after 4 and 6 hours of 
exposure in FF. Solid bars refer to female whereas shaded bars refer to male workers. 

7.2.2.6.1 Discussion 

The lung exposure dose calculator is simple to use and produces results that can be easily integrated in 

a risk assessment study for the effects of human exposure to NMs. A minor issue is that the tutorial is 

rather technical. To make the tool more useful to stakeholders, the tutorial should be improved to 

include more details on the input parameters in more simple language. 
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7.2.2.7 PBPK models and integration with the occupational exposure model  

This web application uses PBPK modelling to simulate the NP biodistribution in humans due to 

inhalation exposure (https://exposurepbpk.cloud.nanosolveit.eu/)161. The application consists of an 

external and an internal model for inhalation route exposure to TiO2 NMs. External exposure scenarios 

can be defined directly by the user by uploading a custom-made exposure scenario, or it can be 

simulated through the multi-box aerosol model. For the internal exposure module, the user provides 

information on the weight of the worker and the exposure duration (the last point of the simulation 

time vector in hours). The mass-time profiles are generated by the PBPK model for various body 

compartments (heart, spleen, brain, kidneys, alveolar, upper, and lower respiratory, liver, 

tracheobronchial, blood, skin, lung interstitium and capillaries and, rest of the body). The user can select 

from the drop-down menu the desired compartment and observe the NP deposition in this organ/tissue 

as a function of time. As the background PBPK model incorporates the effects of clearance processes 

(removal of the NMs from the human body), this tool extends the lung exposure dose calculator and 

produces more realistic biodistribution simulation results, especially for longer-term exposures. 

To start the analysis, the results of the multi-box aerosol calculations in NF were uploaded to describe 

the external exposure scenario. Then the weight of the worker and the last point of the simulation time 

vector (6 hours) were adjusted as needed for the PBPK model. Upon execution, the mass-time profile 

for each organ was produced as presented in Figure 65. The deposited dose at the last point of the 

simulation for different worker weights is presented schematically in Figure 66. These show that higher 

deposited doses occur in the respiratory system.  

 

Figure 65: TiO2 NMs (22nm) mass-time profile in the different organs/compartments of the human body (here in the upper 
respiratory system), as produced by the exposure-PBPK model. 

https://exposurepbpk.cloud.nanosolveit.eu/
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Figure 66: Deposited TiO2 NMs (22nm) doses in different body regions/organs for different body weights (in kg) after 5.62hrs 
of exposure to the NM source according to the multi-box aerosol model.  

7.2.2.7.1 Discussion 

The tool is simple to use, it exploits the results of the multi-box aerosol model, or it can be used with 

custom-made exposure scenarios to derive mass-time profiles of the deposited NMs in different 

organs/regions of the human body. These functions allow it to be used in combination with other risk 

assessment studies for regulatory purposes. Nevertheless, revisions are needed to allow full 

exploitation of the tool and to improve the user experience. For example, the mass-time profiles cannot 

be downloaded and stored in the user’s computer. Thus, users cannot post-process their results (e.g., 

inspect the dose in intermediate time steps, present the mass-time profiles on different organs in the 

same plot, etc.). In addition, the simulations must be repeated every time the stakeholders want to 

use/present the specific biodistributions. Another issue is that the simulations did not span the entire 

six hours (the last time point was at 5.62 hours). Even when specifying an “end time” of 8-hours, the 

simulation still stopped at 5.62 hours. This prevents study of longer-term NM biodistribution (e.g., for 

a day or a week-period). Another operational issue is that server timeouts occurred and interrupted 

the calculations. Finally, the PBPK model was developed using biodistribution data for TiO2 NMs of 

22nm size and, therefore, simulations for TiO2 NMs with similar diameter are likely to be the most 

reliable161. The model should be extended to a more diverse set of NM types and sizes.  
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7.3 Case study 3: Combination of nanoinformatics models into SAPNets 

7.3.1 Scope of the third case study 
The SAPNets as described by Rybińska-Fryca et al.112 are a “series of mutually dependent predictive 

models” where the prediction of an endpoint is based on descriptors predicted by other “meta-

models”. The development of a SAPNet is carried out in three phases. A NM’s structural 

characterisation, physical and chemical characteristics, and toxicity are all compiled first. Next, by 

creating “meta-models”, the most pertinent intrinsic and extrinsic features that are likely to affect NM’s 

toxicity are found. Eventually, these “meta-models” that outline the relationships between the most 

important characteristics of NMs and their unfavourable effects are created. The network is 

constructed in this manner, layer by layer, starting from the endpoint (such as toxicity or other 

properties) and ending with descriptors that define the NM structure. As a result, SAPNets can be 

directly used by non-specialists as they can easily perceive the structural characteristics that need to 

be changed (such as NMs size, shape, aspect-ratio, and type of coating) to produce a safe NM with 

desired properties. An example of a SAPNet is already presented in the second case study 

(NanoMixHamster tool). The concept of SAPNets can be further applied on the combination of existing 

models for the prediction of NMs properties. 

In this case study, a nanoQSPR (quantitative structure–property relationship) model that expresses the 

zeta potential in a potassium chloride solution, as a function of physicochemical (zeta potential in 

water) and periodic table-based (periodic number, PN) descriptors is combined with another 

nanoinformatics model which provides the first model with calculated values of the zeta potential in 

water. In other words, the physicochemical descriptor used for the derivation of the desired endpoint, 

is not taken from an experimental study, but rather estimated in silico. 

The workflow for the SAPNet analysed in this work was originally proposed (but not implemented) by 

Rybińska-Fryca et al.112. Here, we put into application, and we evaluate the possibility of combining 

models existing in the literature in an effort to exploit all the already available models and predict more 

nanoinformatics-related endpoints. Rybińska-Fryca et al.112 suggest, for the prediction of the zeta 

potential in aquatic solution, the use of a QSPR model developed by Toropov et al.217 developed using 

the Monte Carlo approach or the use of a nanoQSPR model developed by Mikolajczyk et al.142 that 

requires information for physicochemical and molecular descriptors for the zeta potential predictions. 

In this case, we employed a different and simpler read-across model for the zeta potential in water 

which is based on periodic table descriptors and the NMs core size (MS3bD model)1.  

7.3.2 Results of the third case study 
The described SAPNet is presented schematically in Figure 67. 
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Figure 67: Graphical representation of the zeta potential in KCℓ prediction according to the SAPNet scheme. 

Model A: Papadiamantis et al.1 created the MS3bD (MScubed: Molecular, Size and Surface based Safe 

by Design) model, which is a fully validated kNN predictive model according to the OECD principles218, 

that calculates the zeta potential values in water in pH=7 (ζΗ2Ο). The dataset used for developing the 

model contains twenty physicochemical properties for 69 ENMs219 and can be found in the NanoPharos 

database (https://db.nanopharos.eu/Queries/Datasets.zul?datasetID=3). Moreover, among the twenty 

descriptors in the original dataset, five variables were selected to be included for model development. 

The properties required as input for the model are the type of coating, the NM core size measured with 

transmission electron microscopy (TEM) or scanning TEM (STEM), the ionic radius of the metal in the 

core of the NM, the absolute electronegativity (χabs) and the sum of metal electronegativity divided by 

the number of oxygen atoms present in the MeOx (Σχ/nO). The output results include the zeta potential 

prediction, and an indication whether the predicted value falls within the model's applicability domain, 

characterizing the prediction as either reliable or unreliable. The model is available through the Enalos 

Cloud Platform as a web service, which can be found at https://mszeta.cloud.nanosolveit.eu/, however 

training material is not available for this tool. The obtained values for ζΗ2Ο included in this study were 

derived online via this web service. 

Model B: The obtained values of ζΗ2Ο for different NMs are used as input in a model developed by 

Wyrzykowska et al.98 that predicts zeta potential in KCℓ solution (ζKCℓ) using the MLR. The model is 

developed with two standardised descriptors (using gaussian normalisation), zeta potential in distilled 

water (ζΗ2Ο, neutral pH of 7) and periodic number (PN), which indicates the number of electron shells 

in the MeOx NMs: 

𝜁𝐾𝐶ℓ =  3.98 +  21.68 ∙ 𝜁𝐻2𝑂 +  7.88 ∙ 𝑃𝑁  

The original dataset based on which the linear model was built, was taken from Pathakoti et al.220. The 

two independent variables were selected using a genetic algorithm (GA-MLR), among a set of 62 

physicochemical, quantum and periodic table-based descriptors, while the data were normalised and 

split into training and validation subsets, as presented in Table 18. To assess the quality of the model, 

authors followed the recommendations of the OECD119 in model validation.  

https://db.nanopharos.eu/Queries/Datasets.zul?datasetID=3
https://mszeta.cloud.nanosolveit.eu/
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Table 18: Experimental data for model training and testing, including ζKCℓ (mV), and predicted by the nanoQSPR model98 
(ζKCℓ,predicted mV) for 15 MeOx NPs. 

NP 
Particle 

TEM size 
[nm] 

ζH2O 

[mV] 
PN 

ζKCℓ,exp 

[mV] 

ζKCℓ,predicted 

[mV] 
Subset 

In2O3 60 22.6 5 28.7 32 Training 

NiO 14 26 4 26.8 26.5 Training 

Al2O3 55 30.3 3 25.3 23.1 Training 

La2O3 65 -3.6 6 22.3 12.8 Training 

CuO 28 24.4 4 19.1 24.9 Training 

ZrO2 27 -6.9 5 4 1.9 Training 

TiO2 42 -10.7 4 -2.2 -9.4 Training 

Bi2O3 144 -16.5 6 -4.9 0.2 Training 

SnO2 15 -21.1 5 -16.7 -12 Training 

ZnO 71 -20.9 4 -24.9 -19.4 Training 

SiO2 20 -29.8 3 -33.7 -35.7 Training 

CoO 55 17.5 4 26 18.2 Validation 

Y2O3 38 16.3 5 17.9 24.6 Validation 

Sb2O3 84 -20.7 5 -12.7 -11.6 Validation 

V2O3 NA -27.9 4 -32.6 -26.2 Validation 

 

To begin with, we tried to reproduce the results of the Wyrzykowska et al. MLR model (also presented 

in Table 18) and, by applying the model on the data of In2O3 the predicted ζKCℓ equals 533.35mV 

instead of 32mV. Same applies for all the predicted ζKCℓ values of the NMs in Table 18. In the 

publication of Wyrzykowska et al.98 it is stated that the independent variables (descriptors) are auto-

scaled, however no extra information is provided. For this reason, we reproduced the modelling steps 

in KNIME, including Gaussian normalisation of the descriptors, to ensure that we will use the correct 

model on the SAPNet development. In this course, regarding the applicability domain definition, a small 

issue arose for the leverage threshold (h*). For this parameter the authors considered to use the 

endpoint values to calculate the leverage (h*), except for the independent descriptors. This means that 

when an untested sample is examined, its leverage could not be calculated as the endpoint values are 

unknown.  Thus, the correct leverage limit value (h*) is 0.55 instead of 0.82. In Figure 68: The William’s 

plot for the graphical visualisation of the NMs relative position with respect to the leverage threshold 

(h*). Data are acquired from Table 18. No outliers exist in this case; thus, no extrapolated endpoint 

values are calculated for the validation set.Figure 68 a graph (William’s plot) is presented that visualises 

the applicability domain of the model with respect to the h* value, and thus helps to visualise 

interpolated and extrapolated predictions.  
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Figure 68: The William’s plot for the graphical visualisation of the NMs relative position with respect to the leverage 
threshold (h*). Data are acquired from Table 18. No outliers exist in this case; thus, no extrapolated endpoint values are 

calculated for the validation set. 

Wyrzykowska et al. used another dataset (available as supporting material in their publication) as an 

external set of datapoints for predictions of ζKCℓ. This dataset (  
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Table 19), comprises a list of experimentally derived values of the zeta potential in water for 44 different 

types of MeOx NPs, where the particle size is given and the ζKCℓ values are unknown. Nonetheless, the 

conditions under which the zeta potential in water is measured are not included in the publication and 

we could not trace back the respective meta-data (e.g., pH of the solution) when searching on the data 

sources for the zeta potential values.  
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Table 19: External dataset with 44 experimental datapoints for zeta potential in water and the predictions of zeta potential in 
KCℓ according to Wyrzykowska et al.’s model98. 

Row 

ID 

MexOy 

NP 

Hydrodyn. 

diameter 

[nm] 

Particle 

size TEM 

[nm] 

Engineered 

size [nm] 

ζH2O,exp 

[mv] 
PN 

ζKCℓ,predicted 

[mV] 

1 ZnO - - 50 -55 4 -52.711 

2 ZnO - - 50 -50 4 -47.8214 

3 ZnO - - 60 -45 4 -42.9318 

4 ZnO - - 1000 -44 4 -41.9539 

5 ZnO - - 1200 -33 4 -31.1968 

6 ZnO - - 1200 -32 4 -30.2188 

7 ZnO - - 60 -30 4 -28.263 

8 ZnO - - 70 -29 4 -27.2851 

9 ZnO - - 50 -25 4 -23.3734 

10 ZnO - - 1200 -31.8 4 -19.4617 

11 ZnO - - 1000 -20 4 -18.4838 

12 TiO2 - - 30 -15 4 -13.5942 

13 TiO2 - - 30 -12 4 -10.6604 

14 TiO2 - - 45 -11 4 -9.6825 

15 TiO2 - - 125 -10 4 -8.7046 

16 TiO2 - - 125 -9 4 -7.7266 

17 TiO2 - - 125 -8 4 -6.7487 

18 MnO2 - - - -47.6 4 -45.4744 

19 WO3 - 30,0-70,0 - -9.1 6 7.3923 

20 ZrO2 - 46.7 - -8.5 5 0.3707 

21 SnO2 - 46.1 - -10.5 5 -1.5851 

22 Sb2O3 - 90,0-

210,0 

- -13.3 5 -4.3233 

23 In2O3 - 29.8 - -9.6 5 -0.705 

24 La2O3 - 46 - -12.8 6 3.774 

25 V2O3 - - - -22.8 4 -21.222 

26 Al2O3 - 44 - -20.2 3 36.4948 

27 Fe2O3 - 32 - -18.1 4 -16.6257 

28 ZnO - 71 - -10.8 4 -9.4869 

29 Y2O3 - 38 - -10.7 5 -1.7807 

30 TiO2 - 42.3 - -9.6 4 -8.3134 

31 SiO2 - 15 - -8.1 3 -14.4549 

32 CoO - <100 - -3.4 4 -2.2503 

33 Bi2O3 - 90 - -2.3 6 14.0422 

34 Al2O3 94.7 - - 39.2 3 31.8008 

35 Co3O4 99.2 - - 23 4 23.5669 

36 CuO 130 - - 17 4 17.6993 

37 Fe3O4 128 - - 22.1 4 22.6867 

38 MgO 1964 - - 6.8 3 0.11615 

39 Mn3O4 395 - - -14.3 4 -12.9096 

40 Sb2O3 124.7 - - -24.2 5 -14.9827 
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41 SiO2 147.8 - - -33.5 3 -39.2941 

42 ZnO 161.3 - - 16.4 4 17.1126 

43 TiO2 171 - - -13.4 4 -12.0295 

44 WO3 62.8 - - -45.2 6 -27.9107 

 

In order to incorporate the created SAPNet, a part of the datapoints from this dataset were used, first 

to calculate the zeta potential in water from the read-across model (model A) and compare the 

predictions to the respective experimental value, and then to predict the zeta potential in KCℓ from the 

nanoQSPR model (model B). The datapoints from   
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Table 19 that could be used in the SAPNet are the NMs in rows 19-24, 26-31 and 33, as they are the 

only ones with known core sizes measured with TEM (the necessary descriptor for model A). In case of 

the NMs in rows 19 and 22, the average diameter of the particles was used. Specifically, each uncoated 

NMs’ core diameter is used as input in the MS3bD model, while the rest required data are periodic table 

descriptors. The χabs were calculated by the formula provided in the respective publication11. It should 

be noted that solely ζΗ2Ο predictions characterised as “reliable” (interpolated predictions) were 

accepted and fed into model B, as the rest NM samples are located outside the applicability domain of 

the model A and predictions for them are considered less accurate (extrapolated predictions). Next, 

the predicted ζΗ2Ο values are used to predict the ζΚCℓ values, as summarised in Table 20.  

Table 20: Zeta potential values in aquatic and KCℓ solutions for different types of NMs, derived following the SAPNets scheme. 

NM type 
Core diameter 

[nm] 

ζH2O, 
ΜS3bD 
model 
[mV] 

Reliability of 
predicted ζH2O 

ζH2O 
exp. 
[mV] 

ζKCℓ, 
SAPNet 

[mV] 

Reliability of 
predicted ζKCℓ 

WO3, uncoated 50.0 -0.8 reliable -9.1 15.5 reliable 

ZrO2, uncoated 46.7 6.8 reliable -8.5 15.3 reliable 

SnO2, uncoated 46.1 -8.6 reliable -10.5 0.2 reliable 

Sb2O3, uncoated 150.0 -15.6 reliable -13.3 -6.6 reliable 

In2O3, uncoated 29.8 -11.0 reliable -9.6 -2.1 reliable 

La2O3, uncoated 46.0 -8.7 reliable -12.8 7.8 reliable 

Al2O3, uncoated 44.0 -0.7 unreliable 44 NA NA 

Fe2O3, uncoated 32.0 -11.0 reliable -18.1 -9.7 reliable 

ZnO, uncoated 71.0 6.5 reliable -10.8 7.4 reliable 

Y2O3, uncoated 38.0 -11.1 reliable -10.7 -2.2 reliable 

TiO2, uncoated 42.3 -11.0 reliable -9.6 -9.7 reliable 

SiO2, uncoated 15.0 -0.9 unreliable -8.1 NA NA 

Bi2O3, uncoated 90.0 -9.4 reliable -2.3 7.1 reliable 

 

7.3.3 Discussion 
The concept of SAPNets and its application on existing nanoinformatics models may support the 

nanocommunity to go above the current limits of the models and contribute to the nano-data gap-

filling. Nevertheless, model combination cannot be performed in an uncontrolled manner, as some 

possible problems should be considered prior to the mere combination of existing models. To begin 

with, the models’ requirements should be studied, to be used in the appropriate way and derive 

meaningful predictions (e.g., in this case we tried to reproduce the reported results). Next, the models’ 

“compatibility” should be taken into account which is closely related to the data used to train the 

separate models. For example, the two models combined here are trained on different data and the 

descriptor that links them is the zeta potential in water. We tried to ensure that the zeta potential in 

water is measured under the same conditions and in fact we confirmed that the pH of the water 

solution in which the zeta potential was measured was in both cases equal to 7. However, we could not 

corroborate if the rest of the conditions affecting the zeta potential (e.g., the concentration of the NMs 

in the solution or the temperature) were the same. In addition to the other ambiguities, when testing 

the SAPNet using the external dataset (  
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Table 19), we were also unsure for the pH of the solution where the ζΗ2Ο was measured. The data and 

meta-data sharing for both experimental and computational scientific teams is the only way to ensure 

transparency at all levels, including the combination of models.  

The reliability assessment of the in silico models, is the direct comparison of the endpoint predictions 

with experimental values. In this course, the reliability of the predicted ζKCℓ values of Table 19 cannot 

be assessed as there are not available any experimental ζKCℓ values for this external dataset. In Figure 

69, a comparison is made between the predicted ζKCℓ values generated directly by the MLR model 

(model B) using experimental ζΗ2Ο values (Table 19) and the ζKCℓ values generated by the model B of 

the SAPNet using the predicted ζΗ2Ο input from model A (Table 20). Large differences between the two 

predicted values are observed, that are possibly due to the differences between ζΗ2Ο experimental and 

predicted values. It should be noted that to generate the ζΗ2Ο using model A the average diameter of 

the particles was used in the cases of samples 19 and 22 in Table 19 (the NPs zeta-potential is correlated 

to their size). In addition, we could not ensure that when training the original-independent models A 

and B the ζΗ2Ο (which in this SAPNet is used as a linking property) refers to the exact same conditions. 

Such problems could be addressed by the expansion of the data space, by generating and sharing of 

data that cover more conditions and can lead to more accurate and reliable predictions. Nonetheless, 

the concept of SAPNets could be particularly useful when using models that use computational 

descriptors (they are not based on experimental data). This is the case of the study of Stoliński et al.101 

(also presented in § 7.2.2.2 and in Appendix II) where the linking property between the SAPNet models 

(the nanocluser additive electronegativity)  is predicted based on a theoretical model. 

 

Figure 69: Comparison of the predicted ζKCℓ values using the Wyrzykowska et al.’s MLR model98 (Table 19) and the SAPNet 
(Table 20). 

The domains of applicability of the models should be also considered and unreliable predictions from 

the first layers of the SAPNet should be excluded in the next ones. In this case study, both applicability 

domains are defined and thus, the stakeholders can be aware of the limits of the models and the level 

of trust to their predictions. This procedure of studying all the aspects of the combined models is a time 

consuming and tiresome process, and there is a possibility that the stakeholders won’t be willing to 
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spend the required time and/or effort and thus, decide not to use the models to create a SAPNet. For 

this reason, computational teams should provide all the modelling information in a transparent and 

understandable manner. In this way, stakeholders will be able to understand if two or more models are 

suitable to be combined before committing too much time and effort in this process. 

Another issue, also raised by Rybińska-Fryca et al.112, is the possible uncertainty propagation along the 

network. Certainly, propagation of error occurs since two independent computational studies are 

combined to retrieve the endpoint values of ζKCℓ. Here, we made a first effort to enlighten these 

uncertainties. For a multi-linear equation with the form f=f(u,v,w), the error propagation formula 

contains the partial derivatives of f with respect to the values of u, v and w (which are uncorrelated): 

𝛿𝑓 = √(
𝜕𝑓

𝜕𝑢
𝛿𝑢)

2

+ (
𝜕𝑓

𝜕𝑣
𝛿𝑣)

2

+ (
𝜕𝑓

𝜕𝑤
𝛿𝑤)

2

 [22] 

Therefore, for the linear regression model 𝜁𝐾𝐶ℓ =  3.98 +  21.68 𝜁𝐻2𝑂 +  7.88 𝑃𝑁, the 

propagation of error is calculated as follows:  

𝛿(𝜁𝐾𝐶ℓ) = √(21.68 𝛿(𝜁𝛨2𝛰))
2 + (7.88 𝛿(𝑃𝑁))2 

The error propagation formula considers the uncertainties or errors in the input parameters that are 

subject to uncertainty or measurement error, which in this case would only be the ζΗ2Ο. PN, the 

periodic number, is easily calculated, thus it is not subject to measurement uncertainty.   

Then the propagation error is,  

𝛿(𝜁𝐾𝐶ℓ) = 21.68 𝛿(𝜁𝛨2𝛰) 

According to the principles of error propagation, errors in ζΗ2Ο depend on the uncertainties in the 

experimental and calculated values. The experimental and calculated values cannot be considered as 

independent random errors, since only the calculated ζΗ2Ο is used in the SAPNet. In this case, the 

uncertainty of the experimental ζΗ2Ο value is not relevant in error propagation. The estimation of the 

uncertainty in the calculated ζΗ2Ο values is based on the principles of error propagation mentioned 

above and the formula is: 

𝛿(𝜁𝛨2𝛰𝑐𝑎𝑙𝑐) = √𝛿(𝜁𝛨2𝛰𝑒𝑥𝑝)
2 + (𝑠𝑡𝑑 𝑑𝑒𝑣. )2 

For the error in the experimental values of ζΗ2Ο, the assumption is made about the typical magnitude 

of the uncertainties based on the precision of the measurement. The last decimal place is considered 

uncertain, therefore 𝛿(𝜁𝛨2𝛰)𝑒𝑥𝑝𝑒𝑟  = 0.1. The standard deviation between the experimental and 

calculated values of zeta potential in water is calculated as follows: 

𝑠𝑡𝑑 𝑑𝑒𝑣 =  √
∑ [(𝜁𝛨2𝛰𝑐𝑎𝑙𝑐,𝑖 − 𝜁𝛨2𝛰𝑒𝑥𝑝,𝑖) − 𝑎𝑣𝑔(𝜁𝛨2𝛰𝑐𝑎𝑙𝑐 − 𝜁𝛨2𝛰𝑒𝑥𝑝)]

2

𝑛
= 5.46 

The standard deviation in ζΗ2Ο can be estimated as: 

𝛿(𝜁𝛨2𝛰𝑐𝑎𝑙𝑐) = √0.1
2 + 5.732 = 5.47 

Eventually, the error propagation in the endpoint ζKCℓ value is 𝛿(𝜁𝐾𝐶ℓ) = 118.5mV. Even though the 

error that spreads in the final zeta potential in KCℓ value is large, it should be noted that in the initial 

linear regression model, the coefficient of ζΗ2Ο is also high. This means that a relatively small increase 

in the normalised value of the zeta potential in water results in a great increase in zeta potential in KCℓ. 
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At this point we must mention that the predictions on the ζΗ2Ο derived from model A are at pH 7. 

Nevertheless, as we may not be sure about the conditions where the respective experimental values of 

ζΗ2Ο in   
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Table 19 are acquired, we cannot guarantee that a straightforward comparison of the two values can 

be made. This is a possible explanation of the large 𝛿(𝜁𝛨2𝛰𝑐𝑎𝑙𝑐) error that contributes next to the error 

spread.  
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8 Summary 
In this section, the analyses, and the key findings of all the subtasks are gathered, while overall 

conclusions to drive future developments in the areas of in silico approaches for hazard and risk 

assessment of NMs are presented. Firstly, a search strategy was developed for the literature review of 

existing computational methods in the nanoinformatics field. This strategy determined the terms of 

inclusion/exclusion of the available scientific publications and models in the pool of assessed studies. A 

preliminary assessment of these studies highlighted some shortcomings regarding the availability of 

datasets for the development of in silico methodologies, as well as the use of validation statistics. The 

key parameters for evaluating the studies were identified, such as the type of employed methodologies, 

the type of data used for modelling, the documentation of the models, etc. 

After that, a further and in-depth analysis of the collected models and tools found in literature and in 

other reliable sources was performed. Each study was evaluated separately, and information was 

stored for comparing and assessing methodologies easily. The assessed computational methodologies 

included nanoQSAR models, grouping/read-across strategies, PBPK models, molecular dynamics 

simulations, and AOPs. Emphasis was placed on the nanoQSAR and read-across models, including the 

data used, the applied modelling methodologies, the validation techniques, and the assessment of their 

availability. Each study was also subjected to a quality review, and the dissemination potential of the 

various produced models as user-friendly tools was evaluated. The already developed tools were tested 

and the key parameters of their use were presented in a concise way.  

Furthermore, experts in the field of nanoinformatics from Academia and Industry shared their 

professional opinion regarding the available computational models and methods for NMs hazard and 

risk assessment, and the potential steps for future improvements. By studying their responses in the 

respective online survey, we observe that their views converge on some basic issues. One of the main 

problems that was highlighted is the NMs data scarcity and heterogeneity. Experimental NM data are 

limited, scattered in different sources (often not accessible for modellers) and formats, and not 

collected or harmonised under a common protocol. Meta-data regarding the experimental conditions 

are often also unavailable. This leads to the development of models for a limited number of NMs with 

limited applicability domains. Another issue that was emphasised is the lack of guidelines regarding the 

standard properties that should be included in the developed methods by the modellers. From their 

side, modellers are not always providing proper documentation of their models including all the 

assumptions or approximations, modelling, validation, and reliability tests that ensure transparency and 

could reinforce the users’ confidence in the models’ predictions. To further reinforce the trust in the in 

silico predictions, these should be linked with real cases and applications. Novel techniques should also 

be developed to address the complexity of NMs, including deep learning models. A communication 

channel between the stakeholders and the modellers should also be established to exchange feedback 

and make the in silico methods more useful and reliable. Many of the highlighted issues are summarised 

in one expert’s opinion: “There is no open science core (in terms of community standards): no open 

data core, no open-source core, no open standards core”. The lack of community standards and 

foundations (such as definitions of what can be considered as “Open data”, and practices about Open 

data and data sharing) impedes the integration of the different in silico methodologies in routinely-

performed risk assessment procedures and thus, the potential of these methods is not fully exploited. 

FAIR and Open data and models, and in general Open Science could provide a foundation of the 

knowledge economy. 

In compliance with the analysis of the previous findings, we then prepared three case studies for in 

silico models for different applications in NMs of various categories. In the first case study three read-

across methods found during the review were employed to assess the anti-microbial interactions 
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between CNPs (fullerenes, CNTs and GS) and a SARS-CoV-2 RNA fragment, based on physicochemical 

descriptors. The endpoint of interest was the total potential energy interaction encoding the magnitude 

of the driving force towards complexation between the CNPs and the cov-RNA fragment. The results of 

each method were presented in detail and comparisons/consensus results were presented whenever 

possible. Discussion on the different functionalities of the methods was also performed to highlight 

their strengths and weaknesses.  

In the second case study, seven freely available and user-friendly tools were assessed for predicting 

toxicities and biodistributions of TiO2 and TiO2-based NMs. They all allow stakeholders to perform fast 

sensitivity analyses or virtually screen newly synthesised NMs, to reduce the time and resources 

required for experimental evaluation. These tools are suitable for use in an SbD framework to explore 

the correlations between different properties and the nanotoxicity to define the limits within which 

NMs are safe and help formulate regulatory limitations. Nonetheless, to guarantee the future viability 

and use of the tools, frequent feedback is required to create more accurate models as more data 

appear, and to provide tools with more functions (especially the prediction reliability based on the 

applicability domain of the background models). Finally, scientific, and computational groups 

developing such models and tools should invest time in developing comprehensive tutorials that allow 

stakeholders to exploit the tools to the greatest extent. This should include information on the 

background methods and training data, input parameters and descriptors, typical results, interpretation 

of the results, and benchmarking against new experiments. Unless this occurs, the tools will probably 

not be used widely. 

In the third case study, the possibility of the creation of predictive SAPNets was explored, based on 

models already available in the literature to exploit all the already available models and predict more 

nanoinformatics-related endpoints. The proposed SAPNet methodology was demonstrated using two 

consecutive models. The zeta potential in water is predicted from the first model and its value is used 

as input to the second model to predict the zeta potential in KCℓ solutions. Apart from the 

demonstration of the methodology, we extensively discussed the problems that we faced when 

combining different models which have been trained using different datasets. Resolving those issues 

could lead to trustworthy final predictions that contribute to the SbD of novel NMs or to the fill of data 

gaps. When researchers aim to combine existing models in the literature to enrich their data, they 

should be extremely cautious regarding the models’ quality and compatibility. Otherwise, predictions 

derived from problematic or conflicting models, could hold wide margins of error that in turn, makes 

them practically useless. The descriptors that are the links between the different models should be 

guaranteed to describe the exact same property (measured under the exact same conditions). The 

applicability domains of the combined models should be also considered, to ensure the reliability of the 

predictions across the SAPNet. These uncertainties highlight the need for the development of a 

communication channel between scientists (e.g., experimentalists, toxicologists, material scientists and 

computational scientists, etc.) regarding the true nature of the data and what their values 

represent/express. Furthermore, apart from the data, the meta-data availability and accessibility are 

equally important, as it is the only way to ensure that meaningful comparisons and combinations can 

be made and that modelling workflows can be based on sound foundations.  

8.1 Conclusions and outlook 
Most of the collected and evaluated studies are based on solid modelling workflows, algorithms and 

methodologies and are adequately validated. In addition, the NMs unique characteristics (e.g., the 

properties of materials at the nanoscale, the NMs dynamic behaviour depending on the environment, 

etc.) are incorporated in many of the developed methods. Automation and optimisation of the 

modelling process as well as the incorporation of deep learning methodologies are also considered in 
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the development of the in silico workflows. Progress has been made to create general-use 

methodologies and algorithms that have been proven to produce reliable predictions even with small 

datasets. These approaches enable the straightforward development of different models based on 

different input datasets, allowing their application to various scenarios (endpoints, properties, or types 

of NMs) without the requirement of a grouping hypothesis. The development of other approaches, 

such as simulations, PBPK models, and AOPs, that reveal the NMs toxicity mechanisms and the NMs 

exposure pathways to various organisms can contribute to the SbD of novel NMs. Nonetheless, 

additional efforts are needed in order to address the limitations that were identified in this project. 

The long-standing issue for the development of computational methodologies that will be adequately 

reliable to support or/and replace standard procedures (often involving experiments on animals) of the 

NMs risk and hazard assessment is the lack of reliable data and meta-data. Data is needed for the 

development of nanoQSAR and read-across models and for their statistical validation, but it is also 

needed to assess their predictive performance in external/real-case scenarios. Data is also necessary to 

validate other types of methodologies such as PBPKs and MD simulations and to clearly define their 

applicability domains. In any case, the models’ applicability domain clearly defines the data-space areas 

where predictions can be considered reliable therefore, it strengthens the acceptance and the practical 

use of the model. A representative sample of the available models was studied during this project. 

These models were developed and validated -more or less- according to the OECD standards but their 

actual performance could not be quantified as there is limited data to compare and validate them with. 

The validation on real-case data was also highlighted by the experts as a barrier towards the solid 

foundation of confidence and acceptance of the in silico testing alternatives from the stakeholders. A 

possible way to overcome such barriers and to further validate and/or strengthen the stakeholders’ 

confidence, is the post-hoc experimental analysis of the endpoints of interest by comparing the 

predictions generated by models to the experimental results. Finally, to strengthen the confidence of 

stakeholders to the in silico methodologies transactional research projects can be designed, as 

proposed by one of the experts. Such projects can bridge the gap between the industry, the academia, 

and the regulatory bodies, through the co-development of computational methods for NMs risk 

assessment that will reduce the stakeholders’ uncertainties to the outputs of the predictive models. In 

this course, stakeholders’ training can be performed, and user case studies can be also developed to 

support the integration of the alternative in silico methods to the broader nanosafety community.  

Data and meta-data FAIRification or Open Data initiatives are important to address the data scarcity 

and accessibility issues. It is also a step towards data reusability and integration in automated predictive 

workflows. In this course, universally established test guidelines, ontologies and data harmonisation 

protocols may contribute to the limitation of data heterogeneity, to provide the community with wide 

databases of standardised endpoint values for a range of different nanoforms and reliable and accurate 

experimental data (and meta-data) from well-defined systems. Moreover, the comprehensive data 

collection is a step towards meta-data availability. For this reason, experimental and computational 

scientists should be encouraged to use electronic lab notebook (ELN) software to help them document 

and store the employed methods and protocols, their results in different formats (tables, images, etc.), 

as well as all the necessary meta-data that are linked to each experiment. The digital format of all this 

information makes this data searchable from both humans and computers and greatly contributes to 

data FAIRification and use for modelling purposes. The use of already developed databases such as the 

eNanoMapper, the NanoPharos, the nanoHUB, etc. can later contribute to the data collection and 

organisation in a consistent manner.  

The inherent complexity of NMs should be also considered for both the development of suitable 

nanodescriptors (obtained experimentally or theoretically) and of in silico methodologies. These novel 
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descriptors can integrate the multicomponent identification and complexity of the various nanoforms, 

their different structural and chemical properties, the interactions between NMs and biological 

environments (e.g., protein corona formations, agglomeration phaenomena, etc), as well as the 

experimental conditions under which different NM properties are measured. Same applies for the 

methodologies that can integrate the different NM properties and modes-of-action. The NInChI 

initiative that supports the development of machine-readable text representations of the NMs 

structure and other properties, may greatly contribute to this nanoinformatics aspect.  

Stakeholders may also be reluctant to the computational methodologies, as they are not always 

properly documented or reported in a comprehensive manner (e.g., including the assumptions made, 

the modelling input parameters and the expected results explanation, the validation process, etc.). In 

fact, the analysis of the collected studies revealed certain issues with the use of validation statistics, the 

accessibility and completeness of datasets for the development of in silico approaches, and the proper 

reporting of the models for reproducibility purposes, using a standardised reported format (e.g., QMRF, 

MODA). The use of such a reporting template could be a means to overcome these issues enhancing 

transparency. Following specific guidelines, scientists would be helped to include all the necessary 

modelling parameters, including dataset details (e.g., the NMs space groups, extra descriptors if 

calculated, etc.), data manipulation prior to modelling, validation results (including an adequate 

number of statistical metrics), applicability domain limits, interpretation of the results and availability 

of the source codes where all the modelling workflow is developed (e.g., through a public repository). 

Especially when these models are supported by a scientific publication, reviewers should also control 

and help the authors to improve their work, ensuring that the above objectives are addressed.  

During this project, we also encountered issues and errors in some publications that presented models 

or methodologies. We acknowledge that peer review is a complex process and that reviewers have 

different perspectives and expertise. However, we believe that there is always room for improvement 

in the reviewing process to ensure that scientific publications are of the highest quality. Therefore, we 

suggest that journals take steps to strengthen their reviewing systems to enhance the quality of 

scientific research. This would help to reduce the amount of noise in literature mining and ensure that 

scientific research is accurate, reliable, and trustworthy. 

Models’ dissemination as user-friendly tools is also a step towards their universal integration in the 

NMs risk assessment activities. More specifically, work has been done to make the models attractive 

for non-informatics users, and the availability of scripts in open repositories in combination with the 

availability of deployment platforms will eventually lead to the development of more user-friendly 

nanoinformatics tools in the future. In this course, we must underline that there is a communication 

gap between the modelers/tools’ developers and the stakeholders. It is often taken for granted that 

the functionalities of the tool, the type of necessary input data or the expected results are known or 

obvious. However, this is not always the case as stakeholders come from interdisciplinary fields and 

may not understand how a tool is used or they may interpret the required input data according to their 

background, unless a comprehensive manual is available as supporting material of the tool. In addition, 

the tools should be properly maintained and frequently updated as new data are produced, to ensure 

their permanence in the future. This means that stakeholders who invest (effort, time, etc.) in an in 

silico tool should be able to maintain their trust for a long-term period. Finally, server connectivity issues 

should be also addressed in order to support the usability of the tools.  

The Transparency, Reliability, Accessibility, Applicability and Completeness (TRAAC framework)3 can be 

applied to evaluate the in silico tools quality  in terms of compatibility with regulatory frameworks and 

usefulness for end-users. This framework through the assessment and scoring of the tools can quantify 
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their readiness towards their wider regulatory acceptance, as well as it can identify which barriers 

impede the user-acceptance, based on a series of pre-defined criteria.  

Dynamic communication and collaboration between the different researchers, stakeholders and 

regulatory experts is crucial for the development of robust, reliable, and meaningful descriptors and 

computational models. Data and knowledge can be transferred between interdisciplinary groups and 

thus, each expert can contribute to a different aspect of the nanoinformatics applications enhancing in 

that way the usefulness and applicability of computational methodologies. Such synergies will 

eventually contribute to the accomplishment of the “Closer-to-the-Market-Roadmap” 

recommendations as established by the European NanoSafety Cluster, for the market implementation 

of safe NMs and nano-enabled products221.  
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Appendix I – List of assessed studies and models for nanoQSAR, grouping and read-across alternative methods 
 

Table 21: List of assessed studies and models for nanoQSAR, grouping and read-across alternative methods. Some key information is included in this Table. The “Resource ID” column refers to 
the models ID as recorded in the master file and next to the quality assessment task. In the “Endpoint” column [R] refers to regression (continuous/numerical endpoint) and [C] refers to 
classification (categorical endpoint). In each study more than one dataset may have been employed. The “Model documentation” column refers to the availability of a QMRF or MODA report for 
the respective model.  

Resource 
ID 

Authors Endpoint Dataset size Variable 
selection 

Modelling 
approach 

Model 
validation 

Statistics 
(at least 4) 

DoA  Robustne
ss and/or 
variability 
assessme

nt 

Model 
interpretati

on 

Model 
documentati

on 

Data 
availabili

ty 

1 Varsou et 
al.37  

[R] Cell association in 
A549 cell line (log2-
transformed) - 
[General 
methodology that can 
be used with different 
data and produce 
different models] 

84 Yes The 
prediction 
for an 
untested 
NM is the 
weighted 
average of 
similar NMs 

Internal 
validation 

No No Yes No No Yes 

2 Varsou et 
al.89  

[R] Zeta potential in 
water (pH=6.5 or 7) 

37 Yes kNN External 
validation 

Yes Yes Yes Yes No No 

3 Varsou et 
al.34,123  

[R] Cell association in 
A549 cell line (log2-
transformed), [C] 
Toxicity profile, Cell 
viability [General 
methodology that can 
be used with different 
data and produce 
different models] 

84, 24, 16 Yes The 
prediction 
for an 
untested 
NM is the 
weighted 
average of 
similar NMs 
(numerical 
endpoint) or 
the 
weighted 
majority 
vote of 
similar NMs 

Internal and 
external 
validation 

Yes Yes Yes No No Yes 
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4 Papadiam
antis et 

al.1  

[R] Zeta potential in 
water (pH=7) 

69 Yes kNN  Internal and 
external 
validation 

Yes Yes Yes Yes Yes Yes 

5 Varsou et 
al.35  

[R] Cell association in 
A549 cell line (log2-
transformed), 
adsorption coefficient 
(log-transformed)- 
[General 
methodology that can 
be used with different 
data and produce 
different models] 

84, 28 Yes In each 
group the 
prediction is 
calculated 
by the 
correspondi
ng MLR 
model  

Internal and 
external 
validation 

Yes Yes Yes No No Yes 

6 Kotzabasa
ki et al.76 

[C] Cell viability of 
STEM cells 

16 Yes Logistic 
regression 
model 

Internal and 
external 
validation 

Yes Yes Yes No Yes Yes 

7 Varsou et 
al.70  

[C] Protein binding to 
carbonic anhydrase 
(CA), cell viability by 
WST-1 assay 

83 Yes kNN  Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

8 Varsou et 
al.75  

[C] Cytotoxicity to 
Daphnia Magna 
(death at 48hrs) 
expressed as the EC40 
concentration 

353 Yes kNN  Internal and 
external 
validation 

Yes Yes Yes Yes Yes Yes 

9 Melagraki 
et al.65 

[C] Toxicity class 
(“active”/ “inactive”) 
summarized after 
considering 64 
bioactivity measures 

44 No J48 
classification 
tree 

Internal and 
external 
validation 

Yes Yes Yes No No Yes 

10 Kotzabasa
ki et al.77 

[C] Genotoxicity class 15 Yes Logistic 
regression 
model 

Internal and 
external 
validation 

Yes Yes Yes No Yes Yes 

11 Afantitis 
et al.36 

[R] Cell association in 
A549 cell line (log2-
transformed) 

105 Yes kNN  Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

12 Melagraki 
et al.44 

[R] Cellular uptake in 
pancreatic cancer 

109 Yes kNN  Internal and 
external 
validation 

Yes Yes Yes No No No 
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cells (PaCa2) (log-
transformed) 

13 Puzyn et 
al.50 

[R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50) 

17 Yes MLR 
combined 
with a 
genetic 
algorithm 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

14 Papadiam
antis et 

al.155  

[R] Cytotoxicity (% cell 
viability) to human 
bronchial epithelial 
(BEAS-2B) and murine 
myeloid (RAW264.7) 
cell lines 

345 Yes kNN  External 
validation 

Yes Yes Yes Yes Yes Yes 

15 Kar et al.45 [R] Cellular uptake in 
pancreatic cancer 
cells (PaCa2) (log-
transformed) 

109 Yes Stepwise 
MLR 
followed by 
PLS 
regression 

Internal and 
external 
validation 

Yes Yes Yes Yes No No 

16 Kar et al.52  [C] Cytotoxicity to E. 
Coli ("low-L"/"high-
H") 

25 Yes Linear 
discriminant 
analysis 
(LDA) - best 
performing 
method 

External 
validation 

Yes Yes No Yes No Yes 

17 Papa et 
al.41 

[R] Cell association in 
A549 cell line (log2-
transformed) 

84 Yes MLR, SVM, 
PLS, 
projection 
pursuit 
regression 
(PPR), kNN, 
multivariate 
adaptive 
regression 
splines 
(MARS), 
Neural 
Networks 
(RBFNN, 
GRegNN, 
CPANN), 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 
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random 
forest. PPR 
presents the 
best 
performanc
e. 

18 Sang et 
al.90  

[R] Cell viability of 
human renal cortex 
proximal tubule 
epithelial (HK-2) cells 

72 Yes Random 
forest and K-
means 
clustering 
analysis 
(best 
performing 
method) 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

19 Thwala et 
al.88 

[C] Toxicity to human 
BEAS-2B, murine 
myeloid (RAW 264.7) 
cell lines, and E. Coli 

26 Yes kNN  External 
validation 

Yes Yes Yes Yes No Yes 

20 Swirog et 
al.103 

[R] Electrophoretic 
mobility (μm s-1 V-1 
cm)  

27 Yes GA-PLS (best 
performing 
method) 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

21 Cai et al.91 [R] Toxicity to 
Daphnia Magna 
expressed as EC50 
concentration 

23 Yes MLR Training and 
validation 
using the 
whole set 

No No Yes Yes No Yes 

22 Qi et al.92 [R] Cytotoxicity to 
Chinese hamster 
ovary cells 
(logarithmic values of 
molar 1/EC50) 

34 No Monte 
Carlo-PLS 

Internal and 
external 
validation 

Yes Yes Yes Yes No No 
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23 Balraadjsi
ng et al.118  

[C] Acute 
immobilization (in 
vivo) of Daphnia 
Magna expressed in 
EC50 values and 
transformed to 
classes ("very toxic", 
"toxic", "harmful", 
"not harmful") after 
exposure to metallic 
NMs 

454 Yes Random 
forests (best 
performing 
method) 

Internal and 
external 
validation 

Yes Yes Yes Yes No No 

24 Chatterjee 
et al.59  

[R] Cytotoxicity to 
human keratinocyte 
cell line (HaCaT) 
expressed as the 
molar 1/log LC50, 
cytotoxicity to E. Coli 
(logarithmic values of 
molar 1/EC50 or 1/log 
LC50)- [General 
methodology that can 
be used with different 
data and produce 
different models] 

18,17,16 Yes The 
prediction 
for an 
untested 
NM is the 
weighted 
average of 
similar NMs 

External 
validation 

Yes No No No No Yes 

25 Forest et 
al.104  

[C/R] Cytotoxicity 
("toxic"/"nontoxic") 
based on the 
assessment of the 
LDH release from 
RAW 264.7 cells 

25 Yes PLS 
regression 
and CART 
(Classificatio
n and 
Regression 
Tree) 

Internal 
validation 

Yes Yes Yes Yes No Yes 

26 Liu et 
al.110 

[C] Cytotoxicity via 
propidium iodide 
uptake of BEAS-2B 
cells 

9 NMs Yes Logistic 
regression 
model 

Internal and 
external 
validation 

No Yes Yes Yes No Yes 

27 Pathakoti 
et al.220 

[R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/LC50) 

17 Yes Least square 
regression 

Internal and 
external 
validation 

No No Yes Yes No Yes 
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28 George et 
al.93 

[C] In vitro sublethal 
and lethal endpoints 
and in vivo response 
on Zebrafish embryo 

4032 No SOM None 
reported 

No No No Yes No No 

29 Zhang et 
al.78 

[R] In vitro oxidative 
stress, acute 
pulmonary 
inflammation 

24 Yes Regression 
tree 

Internal 
validation 

No No Yes Yes No No 

30 Chen et 
al.222 

[R] Biological surface 
adsorption index 
(BSAI) denoted as logk 
values of adsorption 
coefficient in organic 
molecules 

23 Yes Linear free 
energy 
relationship 
and PCA 

Internal and 
external 
validation 

No Yes Yes Yes No Yes 

32 Gajewicz 
et al.26 

[C] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50), Cytotoxicity 
to human 
keratinocyte cell line 
(HaCaT) expressed as 
the molar 1/log LC50. 
Values were 
transformed to 
classes. - [General 
methodology that can 
be used with different 
data and produce 
different models] 

17, 18 Yes Hierarchical 
clustering 

External 
validation 

No No No Yes No Yes 

33 Gajewicz 
et al.57 

[R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50), Cytotoxicity 
to human 
keratinocyte cell line 
(HaCaT) expressed as 
the molar 1/log LC50 - 
[General 
methodology that can 
be used with different 

17, 18 Yes One-point 
slope, two 
points 
formula, 
plane 
passing for 
three points 
depending 
on the 
number of 

External 
validation 

Yes No No No No Yes 
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data and produce 
different models] 

the available 
descriptors 

34 Helma et 
al.38 

[R] Cell association in 
A549 cell line (log2-
transformed) 

121 Yes Weighted 
local 
average, 
weighted 
PLS 
regression 
and 
weighted 
random 
forests 

Internal 
validation 

No Yes Yes No No No 

35 Sizochenk
o et al.56 

[R] In vitro cytotoxicity 
data for bacteria, 
algae, protozoa, 
human keratinocyte 
cell, Balb/c 3T3, 
expressed as 
logarithmic values of 
molar 1/EC50 or 1/IC50 

30 No Pearson 
correlation 
coefficient 
(similarity), 
SOM 

None 
reported 

No No No Yes No Yes 

36 Lamon et 
al.113 

[C] In vitro 
genotoxicity via 
Comet assay 

8 Yes PCA, 
hierarchical 
clustering, 
random 
forest 

None 
reported 

No Yes Yes Yes No Yes 
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37 Aschberge
r et al.102 

[C] In vivo and in vitro 
genotoxicity 

19 Yes PCA, 
hierarchical 
clustering. 
Endpoint 
estimation: 
All assessed 
analogues 
form one 
category for 
this 
toxicological 
endpoint 
and data 
gaps could 
be filled by 
interpolatio
n. 

None 
reported 

No Yes Yes Yes No Yes 

38 Epa et 
al.48 

[R] Smooth muscle 
apoptosis (SMA),                                     
Cellular uptake in 
pancreatic cancer 
(PaCa2) and human 
umbilical vein 
endothelial cell 
(HUVEC) 

31, 109  Yes MLR, 
Bayesian-
regularized 
ANN 
methods 

External 
validation 

Yes No No Yes No No 

39 Mikolajczy
k et al.100 

[R] The efficiency of 
phenol degradation 
[%] in UV-vis light, 
Cytotoxicity on 
epithelial cells from 
Chinese hamster 
ovary (CHO-K1 cell 
line, ATCC® CCL-61™). 
The final values of the 
cytotoxicity were 
expressed as the 
logarithm of 50% 
inhibition of the cell 
viability (pEC50). 

29 Yes Linear MLR-
GA and non-
linear 
decision tree 
(DT) 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 
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40 Stolinski et 
al.101 

[R] Cytotoxicity on 
epithelial cells from 
Chinese hamster 
ovary (CHO-K1 cell 
line, ATCC® CCL-61™). 
The final values of the 
cytotoxicity were 
expressed as the 
logarithm of 50% 
inhibition of the cell 
viability (pEC50). 

29 Yes MLR Performed 
on previous 
publication 

No Yes No No No Yes 

41 Rybinska-
Fryca et 

al.112 

[C/R] 
Photodegradation of 
phenol by titanium 
dioxide (τOH). A 
threshold is used to 
define the classes of 
high or low 
photoactivity 
(percent of 
degradation less than 
35%). 

21 Yes Logistic 
regression 
model, PCA 

Internal and 
external 
validation 

Yes Yes Yes No No Yes 

42 Wang et 
al.73 

[R] Root 
concentration factor 
(RCF) and 
translocation factor 
(TF) 

114, 88, 
106, 130 

Yes Back 
propagation 
neural 
network 
(BPNN) 

External 
validation 
(using 3 
subsets) 

No No Yes Yes No Yes 

43 Fourches 
et al.223 

[C] Toxicity class 
(“active”/ “inactive”) 
summarized after 
considering 64 
bioactivity measures, 
[R] Cellular uptake in 
pancreatic cancer 
cells (PaCa2) (log-
transformed) 

44, 109 Yes SVM 
classification
, kNN-based 
regression, 
hierarchical 
clustering 
analysis 
(HCA) 

Internal and 
External 
validation 

Yes Yes Yes Yes No Yes 

44 Kar et al.51 [R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50), Cytotoxicity 

17, 18 Yes Stepwise 
MLR, PLS 

Internal 
validation 

Yes Yes Yes Yes No Yes 
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to human 
keratinocyte cell line 
(HaCaT) expressed as 
the molar 1/log LC50 

45 Papa et 
al.154 

[C/R] Membrane 
damage in cells 
measured by the 
release of LDH 

42 Yes MLR based 
on ordinary 
least squares 
(MLR-OLS), 
SVM, Neural 
networks 
(RBFNN and 
GRNN), J48 
classification 
tree 

Internal and 
External 
validation 

Yes Yes Yes Yes No Yes 

46 Walkey et 
al.33 

[R] Cell association in 
A549 cell line (log2-
transformed) 

105 Yes PLS 
regression 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

47 Gajewicz 
et al.157 

[C] Ferric reducing 
ability of serum (IOP), 
protein 
carbonylation, NOAEC 
from a short-term 
inhalation study in 
rats. Each endpoint is 
transformed in a 
binary class 
(active/inactive) 
according to reported 
thresholds 

19 Yes Decision 
tree models 

External 
validation 

Yes Yes Yes Yes No No 

48 Gajewicz 
et al.63 

[R] Cytotoxicity to 
human keratinocyte 
cell line (HaCaT) 
expressed as the 
molar 1/log LC50 

18 Yes MLR 
combined 
with a 
genetic 
algorithm 
(GA-MLR) 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

49 Burello 
and 

Worth94 

[R] Oxidative stress 
potential 

70 No NA None 
reported 

No No No Yes No No 
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50 Sayes and 
Ivanov224 

[C/R] Cellular 
membrane damage 
via LDH release 

24, 18 Yes MLR and 
linear 
discriminant 
analysis 
(LDA) based 
classification 

Internal 
validation 

No No Yes Yes No Yes 

51 Toropov 
et al.58 

[R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50) 

17 Yes MLR-Monte 
Carlo 
Optimization 

Internal 
validation 

No No Yes No No No 

52 Chau and 
Yap159 

[C] Cellular uptake in 
pancreatic cancer 
(PaCa2) 

105 Yes Consensus 
classifier, 
Naive Bayes, 
Logistic 
Regression, 
kNN and 
SVM 

Internal 
validation 

No No Yes No No Yes 

53 Kleandrov
a et al.121 

[C] Toxic effect class 
(negative or positive) 
based on cut-off 
values for different 
measures of toxicity 
depending on 
biological target, 
namely Cytotoxicity, 
EC50, IC50, TC50, and 
LC50. 

229 Yes LDA External 
validation 

Yes No Yes Yes No Yes 

54 Kaweeteer
awat et 

al.108 

[C] Cytotoxicity to E. 
Coli viability by 
measuring growth 
inhibition (IC50), 
membrane damage, 
and ROS generation 

24 Yes SVM 
classifier 

None 
reported 

No No Yes Yes No No 

55 Bigdeli et 
al.79 

[R] Exocytosis in 
macrophages 

12 Yes PLS 
regression 

Internal 
validation 

No No Yes Yes No Yes 
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56 Tsiliki et 
al.39 

[R] Cell association in 
A549 cell line (log2-
transformed), 
Cytotoxicity to E. Coli 
(logarithmic values of 
molar 1/EC50), 
Cytotoxicity to human 
keratinocyte cell line 
(HaCaT) expressed as 
the molar 1/log LC50- 
[General 
methodology that can 
be used with different 
data and produce 
different models] 

84, 17, 18 Yes SVM 
regression, 
Elastic Net 
Regression 

Internal and 
external 
validation 

No Yes Yes No No Yes 

57 Oksel et 
al.49 

[C] Cell viability in 
BEAS-2B and 
RAW264.7 
cell lines, cellular 
uptake in PaCa2 
cancer cell line, 
cytotoxicity to via 
cellular uptake of 
HaCaT cells, 
exocytosis in 
macrophages-
[General 
methodology that can 
be used with different 
data and produce 
different models] 

24, 105, 18, 
12 

Yes Decision 
Trees 

External 
validation 

Yes No Yes Yes No Yes 

58 Mu et al.60 [R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50) 

16+51 
(untested) 

Yes MLR, 
Pearson’s 
similarity, 
PCA and 
clustering 
analysis for 
variable 
selection 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 
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59 Pan et 
al.54 

[R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50), Cytotoxicity 
to human 
keratinocyte cell line 
(HaCaT) expressed as 
the molar 1/log LC50 

17, 18 No Monte Carlo 
optimization 

Internal and 
external 
validation 

Yes No Yes Yes No Yes 

60 Serra et 
al.167  

[Mode of action 
contextualization] 
Assessment of the 
connections between 
phenotypic entities 
based on their effects 
on the genes. 

28 ENMs, 
615 drugs, 
585 human 
diseases 
and 2288 
chemicals 

No Similarity 
search 
(Jaccard 
index), Gene 
set 
enrichment 
analysis, 
phenotypic 
network 
inference, 
cliques 
search 

Comparison 
with other 
independent
ly computed 
similarities 
based on 
different 
characteristi
cs, such as 
the 
molecular 
structure of 
the drugs 
and 
chemicals, 
the 
symptoms of 
the diseases, 
the use in 
clinical 
practice of 
drugs, and 
the 
pathogenic 
roles of 
chemical 
exposures. 

No No No No No Yes 
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61 Gousiadou 
et al.117  

[R] Toxicological 
responses observed 
in zebrafish (Danio 
Rerio) expressed as 
the Weighted and 
Additive EZ Metric 
based on the 
aggregation of a 
variety of biological 
endpoints 

176 (44 
NMs), 47 
(12 NMs) 

Yes Random 
Forest, 
Decision 
Trees, 
Gradient 
Boosting 
Machine, 
kNN, Linear 
Regression, 
Generalized 
Linear 
Regression, 
SVM with 
Radial 
Function, 
XGB 

Internal and 
external 
validation 

Yes No Yes No No Yes 

62 Karatzas 
et al.99 

[C] Possible 
malformations 
detection in Daphnia 
images and 
classification of 
daphnoids-[General 
methodology that can 
be used with different 
data and produce 
different models] 

4323 
images 

No Object 
detection: R-
CNN coupled 
with a SVM 
model and 
SSD 
discretizatio
n method 
Classificatio
n: residual 
CNN and the 
ImageNet 
CNN 

External 
validation 

Yes No No No No No 

63 Robinson 
et al.72 

[C] Lethality in 
embryonic zebrafish 
(Danio Rerio) 
expressed as classes 
of lethal or non-lethal 
NMs based on lowest 
observed effect levels 
(LOELs) 

44 Yes Random 
Forest, 
logistic 
regression 

Internal and 
external 
validation 

No Yes Yes No No Yes 
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65  
Gajewicz55 

[R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50), Cytotoxicity 
to human 
keratinocyte cell line 
(HaCaT) expressed as 
the molar 1/log LC50 

17, 18 Yes kNN  External 
validation 

Yes Yes No Yes No Yes 

66 Oksel et 
al.105  

[R] Cell viability 10 No PLS Internal 
validation 

No No Yes No No No 

67 Wang et 
al.107 

[R] i. cellular uptake in 
human lung and ii. 
kidney cells (A549 and 
HEK293 cells), iii. 
ability to induce 
oxidative stress 
(indicated by the HO-
1 level in the A549 
cells), and iv. 
hydrophobicity 
(indicated by logP 
values). 

41 Yes kNN  Internal and 
external 
validation 

No Yes Yes Yes No Yes 

68 Vijayaragh
avan et 

al.81 

[R] Tensile strength of 
HFG 

31 No ANN External 
validation 

No No No No No Yes 

69 Lazarovits 
et al.116 

[R] i. Diameter, ii. 
Half-life, iii. Spleen 
accumulation (%ID) 
and iv. Liver 
accumulation (%ID) 

120 Yes Neural 
networks 
(feedforwar
d and 
backpropaga
tion cycle) 

Internal 
validation 

Yes No Yes Yes No Yes 

70 Mikolajczy
k et al.142 

[R] Zeta potential in 
cell culture media 
(serum-free) 

15 Yes GA-MLR, 
consensus 
modelling 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 
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71 Shao et 
al.69 

[R] i. Protein binding 
in bovine serum 
albumin (BSA), ii. 
carbonic anhydrase 
(CA), iii. chymotrypsin 
(CT), and iv. 
hemoglobin (HB), v. 
nitrogen oxide (NO) 
generation, vi. cell 
viability by WST-1 
assay and vii. 
multiassay score 
(arithmetic sum) 

29 Yes Genetic 
function 
approximati
on (variable 
selection)-
MLR 

Internal 
validation 

No No Yes Yes No No 

72 Hassanzad
eh et al.129 

[R] Logarithm of 
adsorption 
coefficients (logk) of 
small organic 
compounds on 
MWCNTs, Logarithm 
of surface area 
normalized 
adsorption 
coefficients (logKSA), 
of organic 
compounds on 
MWCNTs 

40, 69 Yes whole space 
GA (genetic 
algorithm)-
RBFN (radial 
basis 
function 
neural 
network) 

Internal and 
external 
validation 

Yes Yes Yes No No Yes 

73 Gonzalez-
Durruthy 
et al.141 

[R] Mitochondrial 
oxygen consumption 
(E3) (organism rat-
liver) 

16335 No MLR, PLR, 
random 
forests (best 
performing), 
neural 
networks 

External 
validation 

No No No Yes No Yes 

74 Subramani
an et al.133 

[C] Cytotoxicity, 
encoded as “1” (true) 
if measured cell 
viability was <50% 
with respect to the 
control, and “0” 
(false) otherwise 

483 Yes Logistic 
regression, 
SVM, 
random 
forest, 
neural 
networks, 
consensus 

Internal and 
external 
validation 

No Yes Yes Yes No Yes 
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75 Liu et al.66 [C] Toxicity class 
(“bioactive”/ 
“inactive”) 
summarized after 
considering 64 
bioactivity measures 

44 Yes LDA, Naïve 
Bayes 
Classifier 
(NBC), 
Logistic 
regression, 
and kNN 

Internal 
validation 

No Yes Yes Yes No Yes 

76 Kar et al.53 [R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50) 

17 Yes MLR and PLS Internal 
validation 

Yes Yes Yes Yes No Yes 

77 Liu et al.40 [R] Cell association in 
A549 cell line (log2-
transformed) 

84 Yes SVR 
regression, 
Linear 
regression 

Internal 
validation 

No Yes Yes Yes No Yes 

78 Liu et 
al.225 

[R] Additive and 
weighted embryonic 
zebrafish metric (EZ 
Metric) (derived after 
consideration of 
different toxic 
endpoints in 
embryonic zebrafish), 
hpf (hours post-
fertilization) scores. 

656 (82 
NMs) 

Yes kNN, KStar, 
M5P (a 
decision tree 
predictor), 
and Bagging 
(a 
bootstrappin
g meta-
learning 
algorithm) 

Internal 
validation 

No No Yes No No No 

79 Borders et 
al.226 

[R] Young’s modulus 
and Poisson’s ratio 

78 Yes PCA, Star 
plots, PLS 
regression 

External 
validation 

No No Yes Yes No Yes 
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81 Furxhi et 
al.95 

[C] Toxicity (toxic or 
nontoxic) via % cell 
viability 

574, 144 No Simple 
Decision 
Table 
majority 
classifier, 
BNs, 
Random 
Forests, 
kNN, Locally 
Weighted 
Learning, 
Neural 
Network 
Multilayer 
Perceptron, 
Sequential 
Minimal 
Optimization
, Standard 
Linear 
Regression, 
Meta Vote 
Algorithm 

Internal and 
external 
validation 

Yes No Yes No No Yes 

83 Arts et 
al.125 

[C]NMs classification 
in (1) soluble NMs, (2) 
biopersistent high 
aspect ratio NMs, (3) 
passive NMs, and (4) 
active NMs. 

NA No None 
[Decision-
making 
framework] 

None 
reported 

No No No Yes No No 

84 Ghorbanz
adeh et 

al.46 

[R] Cellular uptake in 
pancreatic cancer 
cells (PaCa2) (log-
transformed) 

109 Yes SOM, multi-
layered 
perceptron 
neural 
network 
(MLP-NN), 
MLR 

Internal and 
external 
validation 

Yes Yes Yes Yes No No 
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85 Liu et 
al.156 

[C] Summarized 
multi-perspective 
toxicity profile, from 
seven different assays 
for two different cell 
lines (human 
bronchial epithelial 
(BEAS-2B) cells and 
murine myeloid (RAW 
264.7) cells).  Toxicity 
class (“toxic”/ “non-
toxic”). 

24 Yes Classificatio
n using naive 
Bayesian 
classifier, 
linear 
regression, 
LDA, logistic 
regression, 
quadratic 
logistic 
regression 
and SVM 

Internal 
validation 

No Yes Yes Yes No Yes 

86 Guo et 
al.227 

[R] Breakdown field 
strength of polyimide 
nanocomposite 
polyimide films 

32 No Sequential 
Minimal 
Optimization
-Support 
Vector 
Regression 
(SMO-SVR), 
Stochastic 
Gradient 
Boosting, 
linear 
regression, 
back 
propagation 
neural 
network, 
generalized 
regression 
neural 
network, 
SVR 

Internal 
validation 

Yes No Yes No No Yes 

87 Sangani et 
al.228 

[R] TiO2 mobility in 
intact soil media 
(homogeneity 
expressed as mass 
recovery) 

270 Yes MLR, 
classification 
and 
regression 
tree (CART), 
random 

Internal and 
external 
validation 

No No Yes Yes No No 
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forest and 
ANN 

88 Timoshen
ko et al.229 

[R] Average 
coordination number 

18 No ANN External 
validation 
through 
different 
simulations 
(RMC-EXAFS 
simulations)  

No No No Yes No No 

90 Wyrzykow
ska et al.98 

[R] Zeta potential in 
ionized solution (KCℓ) 

15 Yes GA-MLR Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

91 Sizochenk
o et al.80 

[C] Stability of NPs 
based on the zeta 
potential. Continuous 
zeta potential values 
were converted into 
labels: NPs with ξ < -
25 mV and ξ > 25 mV 
were labelled as 
“stable”, remaining 
endpoints were 
labelled as “unstable” 

208 Yes Neural 
Network 

Internal 
Validation 

No Yes Yes Yes No Yes 

92 Marvin et 
al.230 

[C] Hazard potential 
on various biological 
effects 
(none/low/medium/h
igh) considering 
various 
effect/endpoint 
values 

468 Yes BNs External 
validation 

No No Yes Yes No Yes 

93 Gasper et 
al.231 

[R] Adsorption energy 
(Eads) of a CO 
molecule on nanoPt 
clusters 

195 Yes Gradient-
boosting 
regression 
algorithm 

Internal 
validation 

No No Yes Yes No No 
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94 Jung et 
al.74 

[R] Toxicity to 
Daphnia Magna and 
zebrafish (Danio rerio) 
expressed as -logLC50 

concentration 

134, 98 Yes Euclidean 
Distance 
grouping 
and MLR 

It is stated 
that external 
validation is 
performed. 
However, 
the test data 
are not 
provided, 
and statistics 
seem to be 
derived by 
the training 
data. 

No No No Yes No No 

95 De at al.62 [R] Cytotoxicity to E. 
Coli (logarithmic 
values of molar 
1/EC50), Cytotoxicity 
to human 
keratinocyte cell line 
(HaCaT) expressed as 
the molar 1/log LC50, 
Percentage decrease 
in enzymatic activity 
(enzyme inhibition to 
zebrafish in % 
(%EI_Zebrafish)) 

19,18,24 Yes GA-MLR, PLS  Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

96 Speck-
Planche et 

al.232 

[C] Antibacterial 
activity expressed as 
IC50, MIC, MBC, and 
Microb-Eff 

300 Yes Linear 
discriminant 
analysis 
(LDA), 
perturbation 
theory 

External 
validation 

Yes No No Yes No No 

98  
Ramezaniz
adeh and 
Nazari128 

[R] Thermal 
conductivity of 
Ag/water nanofluids 

Not 
provided 

No MLR and 
GMDH ANNs 

Training and 
validation 
using the 
same set 

No No No No No No 
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99 Findlay et 
al.84 

[C] Protein corona 
formation (proteins 
enriched on Ag ENMs 
"PC" and proteins 
enrichment in 
solution "non-PC") 

3012 Yes Random 
Forest 
classification
, two more 
algorithms 
were used as 
modelling 
approaches 
(LR and 
SVM) 
comparison 
with the 
existing RFC 
model 

Internal 
validation 

Yes Yes Yes No No Yes 

100 Kleandrov
a et al.233 

[C] Ecotoxicity class of 
NPs by converting 
different toxicity 
measures (EC50, IC50, 
LC50, or TC50) from 
assays on bacteria, 
algae, crustaceans, 
and fish to binary 
values according to 
cut-off values 

5520 Yes LDA External 
validation 

Yes No No Yes No Yes 

102 Toropov 
et al.132 

[R] Mutagenic 
potential of MWCNTs 
expressed as the 
negative value of 
decimal logarithm of 
the TA100 (mean 
mutant counts after 
incubation of 
Salmonella strains) 

24 Yes Monte Carlo 
optimization 

External 
validation (3 
subsets) 

Yes Yes Yes No No No 

103 Fernandez 
et al.83 

[R] Graphene 
electronic properties: 
the energy of the 
band gap (EG), the 
ionization potential 
(EI), the energy of the 
Fermi level (EF), and 

622 Yes PLS 
Regression 

Internal and 
external 
validation 

Yes No Yes No No No 
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the electron affinity 
(EA). 

104 Basant 
and 

Gupta61 

[R] Cytotoxicity in E. 
Coli and HaCaT cells 

19,18,17 
(single 
target), 16 
(multi 
target) 

Yes Random 
forest 
regression 

Internal and 
external 
validation 

Yes Yes Yes Yes No No 

105 Roy et 
al.140 

[R] Cytotoxicity to 
Chinese hamster 
ovary cells 
(logarithmic values of 
molar 1/EC50) 

34 Yes Linear 
regression 
based on 
MAE 
criteria, PLS 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

106 Alsharif et 
al.115 

[R] Adsorption 
energies of human 
blood serum proteins 

472 (59 
proteins x 8 
NMs) 

Yes ANN External 
validation (3 
subsets) 

No No No No No Yes 

107 Trinh et 
al.130 

[R] logEC50 of TiO2 
based nano-mixtures, 
Immobilization 
(percentage of non-
mobile and dead D. 
magna compared to 
the control sample of 
D. magna exposed to 
TiO2 based nano-
mixtures) 

76, 313 No MLR, 
random 
forest, SVM, 
and ANN 

Internal and 
external 
validation 

Yes Yes Yes Yes No No 

108 Brinkman
n et al.234 

[R] Log k Adsorption 
Affinity of 
Metabolites to Metal 
and Carbon NMs 

19 Yes Biological 
surface 
adsorption 
index (BSAI) 
theory, MLR 

Internal 
validation 

No Yes Yes Yes No No 
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109 Zhang et 
al.127  

[R] Interaction energy 
(Eint) 

17 Yes Orthogonal 
PLS (OPLS) 
regression 

Training and 
validation 
using the 
same set 

No No Yes No No Yes 

110 El Yamani 
et al.126 

[C] Toxicity by 
combining the results 
of three assays 
(cytotoxicity assessed 
via the AlamarBlue 
(AB) and colony 
forming efficiency 
(CFE) assays, and 
genotoxicity by the 
enzyme-linked 
version of the comet 
assay). Three classes 
are derived namely: 
(1) non-toxic (2) 
slightly toxic and (3) 
toxic 

17 Yes 2D 
Hierarchical 
Clustering 
Analysis, PLS 

None 
reported 

No No No Yes No Yes 

111 Fanourgak
is et al.235 

[R] The adsorption 
capacity for CO2, H2, 
and H2S gases at 
specific 
thermodynamic 
conditions 

2932 Yes Random 
forest 
algorithm 
(RF) 

Internal and 
external 
validation 

No No Yes Yes No No 

112  Luan et 
al.96 

[C] Cytotoxicity 
expressed the 
concentration of NPs 
leading to 50% 
reduction in cell 
viability (TC50) (NPs 
with TC50>503.572 
μM were considered 
non-cytotoxic, 
otherwise they were 
cytotoxic) 

41 Yes Linear 
discriminant 
analysis 
(LDA) 

Internal and 
external (for 
Ni and SiO2 
NPs) 
validation 

Yes No Yes No No Yes 
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113 Jha and 
Yoon111 

[C] Visual 
discrimination of toxic 
versus nontoxic NMs 
through PCA 

73 Yes PCA and 
SVM 

External 
validation 

Yes No No No No Yes 

114 Furxhi et 
al.135 

[C] Nine different 
cellular effects in 
binary mode 
(Triggered, No effect) 

245 Yes BNs Internal and 
external 
validation 

No No Yes Yes No Yes 

115 Roy and 
Roy236 

[R] Cytotoxicity (% cell 
viability) to human 
bronchial epithelial 
(BEAS-2B) and murine 
myeloid (RAW264.7) 
cell lines, expressed 
as effective 
concentration (log 
1/EC50) 

4 sub-
datasets: 9, 
10, 10, 12 

Yes PLS, simple 
linear 
regression 
and 
stepwise-
MLR 

Internal and 
external 
validation 

Yes Yes Yes Yes No Yes 

116 To et al.139 [R] Toxicity in 
concentration-
response in 
embryonic zebrafish 
(18 endpoints 
summed up using 
weighted Aggregate 
Entropy (wAggE) to 
characterize the 
severity of toxicity) 

90 (15 NMs) Yes Random 
Forests 
decision tree 
(4 splits) 

External 
validation 

Yes Yes No Yes No Yes 

117 Fourches 
et al.68 

[C] Protein binding to 
carbonic anhydrase 
(CA), cell viability by 
WST-1 assay, 
transformed to binary 
class. A separation 
bioactivity threshold 
at 2.0 was used to 
split the dataset in 
two classes of CNTs 
with balanced 
distribution CA 
binders (1) and CA 

83 Yes kNN, 
Random 
Forest, SVM 

Internal and 
external 
validation 

Yes Yes Yes Yes No No 
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non-binders (0). For 
the toxicity, a cut-off 
range was used [37–
43%], splitting the 
dataset into toxic (1) 
and non-toxic (0) 
CNTs. 

118 Toropov 
et al.217  

[R] Zeta potential in 
water 

87 Yes Simple linear 
regression - 
Monte Carlo 
optimization 

External 
validation (3 
subsets) 

Yes Yes Yes Yes No No 

119 Toporov 
et al.237 

[R] Cellular uptake in 
pancreatic cancer 
cells (PaCa2) (log-
transformed) 

109 No Least 
squares 
method - 
Monte Carlo 
optimization 

Eternal 
validation 
(five random 
splits in 3 
subsets) 

Yes Yes Yes No No No 

120 Toporova 
et al.238 

[R] Cytotoxicity - 
inhibition ratio (IR%) 
of SiO2 NPs on human 
lung fibroblasts (HFL-
Is) 

16 No Simple linear 
regression - 
Monte Carlo 
optimization 

External 
validation (3 
subsets) 

No No Yes No No No 

121 Toporova 
et al.138 

[R] Damage to cellular 
membranes (MD 
[units/L]) of 
immortalized human 
lung epithelial cells 

42 No Simple linear 
regression - 
Monte Carlo 
optimization 

External 
validation (3 
subsets) 

Yes Yes Yes No No No 

122 Manganell
i et al.131  

[R] Viability (%) of 
cultured human 
embryonic kidney 
cells (HEK293), 
measured by the MTT 
assay 

40 No Simple linear 
regression - 
Monte Carlo 
optimization 

External 
validation (3 
subsets) 

Yes Yes Yes No No Yes 

123 Toropov 
et al.239 

[R] Mutagenicity 
expressed as negative 
decimal log 
transformed TA100 

44 No Simple linear 
regression - 
Monte Carlo 
optimization 

External 
validation (3 
subsets) 

Yes Yes Yes Yes No No 
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124 Yan et 
al.97 

[R] i. 
nanohydrophobicity 
(experimental logP 
value that was 
defined by the ratio of 
the concentration of 
NPs in water to their 
concentration in 
octanol), ii. zeta 
potential in Millipore 
water with pH 7, iii. 
cellular uptake 
(adenocarcinomic 
human alveolar-
based epithelial 
(A549) cells), and iv. 
protein adsorption 
(incubation in 
phosphate-buffered 
saline (PBS) medium) 

147 No Convolution
al neural 
network 
(LeNet and 
GoogLeNet) 

Internal and 
external 
validation 

Yes No Yes Yes No Yes 

125 Wang et 
al.82 

[R] Log-transformed 
surface area 
normalized 
adsorption coefficient 
(log Ksa) 

39 
(aromatic 
compounds) 

Yes MLR, ANN, 
SVM 

Internal and 
external 
validation 

No No Yes Yes No Yes 

126  Baharifar 
and 

Amani240 

[R] Cytotoxicity to 
Mrc-5 cells of 
chitosan/streptokinas
e NPs (Cs/SK NPs) (cell 
viability %) via MTT 
assay 

30 No ANN External 
validation (3 
subsets) 

No No Yes Yes No No 

133 Baboukani 
et al.241 

[R] "Friction": 
maximum energy 
barrier at the onset of 
sliding of a single layer 
2D material against a 
similar layer in an 
inert environment 

15 Yes Bayesian 
Model 

External 
validation 
(comparison 
to other 
studies and 
to 
simulations 
results) 

No No Yes Yes No Yes 
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134 Bilal et 
al.242 

[R] % cell viability and 
IC50 (mg L−1) (in 
eukaryotic cell lines) 

3028 Yes BNs Internal and 
external 
validation 

No No Yes Yes No Yes 

136 Oh et 
al.243  

[R] i. Cell viability: % of 
cell viability or other 
toxicity metric. Ii. 
IC50Value: the 
exposure 
concentration at 
which there is 50% (or 
more) inhibition of 
cell growth or other 
toxicity metric. 

1741 Yes Random 
forest 
regression 

Internal 
validation 

No No Yes Yes No Yes 

137 Gernand 
and 

Casman244 

[R] Pulmonary toxicity 
endpoints: i. 
polymorphonuclear 
neutrophils (PMNs) 
count, ii. 
macrophages (MAC) 
count, iii. lactate 
dehydrogenase (LDH) 
concentration, and iv. 
total protein (TP) 
concentration. These 
indicators were all 
measured in 
bronchoalveolar 
lavage (BAL) fluid 
extracted from the 
lungs of the mice or 
rats and were 
reported as a counts 
per subject or fold of 
control 
measurements. 

136 Yes Regression 
trees, 
random 
forest 
regression, 
stepwise 
linear 
regression 

Internal 
validation 

No No Yes Yes No Yes 

138 Choi et 
al.245 

[C] Toxicity via Cell 
viability (%), NMs 
classified as "toxic" or 
"non-toxic" 

574 No Generalized 
linear model 
(Logistic 
GLM), SVM, 
Random 

Internal and 
external 
validation 

Yes Yes Yes No No Yes 
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Forest, 
Neural 
Network 

139 Bahl et 
al.114  

[C] In vivo and in vitro 
categorization of the 
NMs, classified as 
"active" or "passive" 

11 Yes Random 
Forest, PCA-
kNN 
approach 

Internal 
validation 

No No Yes Yes No Yes 

142 Romeo et 
al.109  

[R] Viability of lung 
cells, Benchmark 
Dose Lower 
Confidence Interval 
(BMDL), [C] BMDL 
classification 

1117 (see SI 
file) 

Yes Bayesian 
Ridge 
Regressor, 
Random 
Forest 
Regressor, 
XGB 
Regressor, 
Gradient 
Boosting 
Regressor, 
Multi-layer 
Perceptron 
Regressor, 
and 
Regression 
Voting 
Ensemble 

Internal 
validation 
(nested 
LOO) 

Yes Yes Yes Yes No Yes 

143 Sotiropoul
os198 

[C] Cytotoxicity class. 
NPs with a cell 
viability percentage 
over 50% were 
considered as toxic. 

345 Yes Random 
Forest 
classification 

Internal and 
external 
validation 

Yes Yes Yes No Yes Yes 

144 Gousiadou
198 

[R] Zeta potential in 
water 

69 Yes XGBoost 
Trees 

Internal and 
external 
validation 

No Yes Yes No Yes Yes 

146 Sotiropoul
os198 

[R] Toxicity expressed 
as median (%) DNA 
strand breaks 

48 No Extra-Trees 
Regressor, 
AdaBoost 
Regressor 

Internal and 
external 
validation 

Yes Yes Yes No Yes No 



 
 

180 
 

148 Sotiropoul
os198 

[R] Cellular uptake 
capacity in A549 cells, 
logP and zeta 
potential in water 

75 to 145 
(not clear) 

Yes Extra - Trees 
Regressor, 
XGBoost 
Trees 

Internal and 
external 
validation 

No Yes Yes No Yes No 

153 Shin et 
al.201 

[C] cytotoxicity class, 
[R] pBMD5, zeta 
potential 

32 (BMD5), 
42 (zeta 
pot.), 61 
(cytotoxicity
) 

Yes MLR, logistic 
regression 

External 
validation 

Yes Yes Yes Yes No Yes 

154 Ambure et 
al.199 

[R] pEC50, membrane 
damage, smooth 
muscle apoptosis, 
solubility, bacterial 
reverse mutation test 
(NanoProfiler tool) 

The tool 
hosts 
"ready-to-
use" pre-
trained 
models on 
different 
NM 
datasets 

Yes Linear 
regression 

External 
validation 

Yes Yes Yes No No Yes 
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Appendix II – Nanoinformatics models and methodologies available via 

GUIs 
In this section we are briefly presenting the models and in silico methodologies found in Literature that 

are disseminated as web applications or stand-alone platforms. The key information of the models is 

presented in tabular format at the beginning of each paragraph, followed by a short presentation of 

their use. Emphasis is given in the availability of training material, considering that the absence of 

instructions renders the tools difficult to use. The models are presented in alphabetical order.  

A safe-by-design tool for functionalised nanomaterials: a web-service available through 

the Enalos Nanoinformatics Cloud Platform 
NMs category: Functionalised MWCNTs 

Endpoint: Protein binding of carbonic anhydrase & cell viability by WST-1 assay 

Reliability: Confusion matrix, accuracy, sensitivity, specificity 

Domain: Indication along with the prediction 

Availability: http://enaloscloud.novamechanics.com/EnalosWebApps/CNT/ 

Training 
material:  

Written manual - 
http://enaloscloud.novamechanics.com/EnalosWebApps/CNT/instructions.zul 
YouTube video - https://youtu.be/BLuG-LwuQ1E  

 

MWCNTs are currently used in numerous industrial applications and products, therefore fast and 

accurate evaluation of their toxicological and biological effect (protein binding of carbonic anhydrase) 

is of greatest importance. In this course, two predictive QNAR/kNN models for the assessment of 

decorated MWCNTs biological and toxicological profile are developed, validated, and released through 

a web-service70. The web-service provides to the user the possibility to import various data sets with 

organic MWCNT decorators of interest during a safe-by-design process. Therefore, their effects on the 

biological and toxicity behaviour of the resulting decorated MWCNTs can be assessed. To initiate the 

process, compound structures must be provided, either as SMILES notations list, via an SDF file, or 

simply as a structure drawing (Figure 70A). The predictions of the MWCNTs toxicity and biological 

activity, and their reliability are produced and presented to the user within seconds (Figure 70B). The 

neighbours’ space of each decorating molecule can be also studied, given that their neighbours are also 

presented as a result to the users (Figure 70C). This web-service is an easily utilisable, user-friendly 

application aiming to facilitate decision making, by reducing expensive and time-consuming 

experimental procedures. 

 

http://enaloscloud.novamechanics.com/EnalosWebApps/CNT/
http://enaloscloud.novamechanics.com/EnalosWebApps/CNT/instructions.zul
https://youtu.be/BLuG-LwuQ1E
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Figure 70: [A] Screenshot of the Enalos cloud platform safe-by-design tool for functionalised MWCNTs interface. [B] Results 
table including toxicity and biological activity predictions and their reliability, for each input compound. [C] Neighbours space 
for each input compound. 

Apellis 
NMs category: General methodology for models’ generation (NMs type based on input data) 

Endpoint: General methodology for models’ generation (endpoint based on input data) 

Reliability: External explained variance, MSE, MAE, confusion matrix, MCC, accuracy, 
sensitivity, specificity 

Domain: If no neighbours are identified for query NM, it is located outside the DoA of the 
developed model 

Availability: https://apellis.jaqpot.org/ 

Training 
material: 

Written manual – https://apellis.jaqpot.org/Apellis%20user%20guide.pdf  
YouTube video – https://youtu.be/kjLXOAOiafs  

 

Apellis is a web-application for read-across model development. Users can train a predictive model (for 

any properties-endpoint dataset), download it, and use it to acquire predictions of NM-related 

endpoints either numerical or categorical. Apellis incorporates the concepts of grouping, read-across, 

and mathematical optimization through genetic algorithms34,123. Users can upload their data in tabular 

format using a CSV file (templates are available) and tune the necessary parameters from the respective 

fields through menus, radio buttons, etc. During the training procedure, the application selects the 

most important NM properties that affect the NMs endpoint (variable selection). In the process of 

grouping NMs for performing read-across predictions, their multi-perspective characterization can be 

considered, by defining more than one similarity criteria (thresholds). The workflow converges to the 

https://apellis.jaqpot.org/
https://apellis.jaqpot.org/Apellis%20user%20guide.pdf
https://youtu.be/kjLXOAOiafs
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grouping hypothesis that leads to the most accurate read-across estimations. After training, a table that 

contains all test set NMs with a successful prediction for the endpoint is presented, a diagram of test 

NMs with their neighbours, as well as diagrams and tables containing information for the optimised 

parameters and model’s accuracy (Figure 71). All results can be downloaded as images or as tables. The 

trained model can be also downloaded and later used through Apellis to acquire predictions for 

untested NMs. 

 

Figure 71: Apellis web interface for the development of regression [A] and classification [B] models. The results include the 
models’ accuracy statistics, the experimental and the predicted endpoint values and the NMs neighbours’ space.  

BioDaph 
NMs category: TiO2 NMs 

Endpoint: TiO2 concentration internalised by Daphnia magna 

Reliability: Comparison to experimental studies 

Domain: The user is advised to upload scenarios for TiO2 concentration within or near 
the range of concentration values that the model of Fan et al. (2016)246 was built 
upon, e.g., 0.1-10 mg/L. 

Availability: https://biodaph.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial – available through the app 

 

The BioDaph online application (Figure 72) simulates the biodistribution of several TiO2 NMs in Daphnia 

magna. The background methodology is based on a simple, first-order biokinetic model which was 

created by Fan et al.246 for describing the bioconcentration of six commercially available TiO2 NMs with 

various sizes and surface properties in Daphnia magna. For each material, two parameters, an uptake 

(ku) and an elimination (ke) rate constant are estimated for three different exposure concentrations 

(0.1, 1 and 10 mg/L), yielding 12 different pairs (ku, ke). This web application hosts a variation of the 

initial model, where the impact of the exposure concentration is determined by averaging over 

different concentrations for each material. Users should provide input for the exposure scenario (TiO2 

https://biodaph.cloud.nanosolveit.eu/
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water concentration over time) and the simulation parameters (the time increment, the simulation 

period, and the type of TiO2 NM). After the simulation, the TiO2 concentration internalised by D. magna 

-time profile is presented in graph format. 

 

 

Figure 72: The NanoSolveIT MeOx BioDaph interface in Jaqpot. Users provide their data by uploading a CSV file with the 
exposure scenario and type the simulation parameters. The simulated bioconcentration in Daphnia Magna time profile is 
presented at the bottom of the interface. 
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Cytotoxicity (cell viability) prediction for metal oxide NPs 
NMs category: MeOx NPs 

Endpoint: Cytotoxicity to BEAS-2B and RAW 264.7 cell lines 

Reliability: Coefficient of determination (𝑅2), external explained variance, Golbraikh & 
Tropsha's test 

Domain: Indication along with the prediction 

Availability: https://cellviability.cloud.nanosolveit.eu/ 

Training 
material:  

Written tutorial - https://cellviability.cloud.nanosolveit.eu/instructions.zul  

 

A web-application is provided through the NanoSolveIT Cloud Platform, which evaluates the 

cytotoxicity effects of MeOx NPs on human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 

264.7) cell lines for two types of cytotoxicity assays: the single parameter ATP and the LDH. A kNN 

model is provided that predicts the cytotoxicity of MeOx NPs expressed as the cell viability 

percentage155. The following set of descriptors used in the model are also the indicated properties 

required as input for the online tool: NP core size, NP hydrodynamic size, assay type, exposure dose, 

energy of the MeOx conduction band (EC), the coordination number of metal atoms in the NP (Coord. 

#Me atoms) and the force vector surface normal component of atoms (V⊥ #all atoms). Input NPs’ data 

can be provided either by filling the provided form or by uploading a CSV file -following a given template 

(Figure 73). The results include the predicted cell viability % for each query NP, the identities, and 

distances of the closest neighbours on which the prediction was based, and an indication of whether 

the prediction can be considered reliable based on the model’s DoA. The results can be downloaded in 

CSV format. 

 

Figure 73: [A] Cell viability web service for the prediction of MeOx NP cytotoxicity. The user inputs the required parameters, 
and the calculation is performed automatically. [B] The results provided from the web service include the prediction, its 
reliability and the neighbours’ space for each input NP. 

  

https://cellviability.cloud.nanosolveit.eu/
https://cellviability.cloud.nanosolveit.eu/instructions.zul
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DeepDaph 
NMs category: TiO2, Ag, or AgS NMs 

Endpoint: Recognition of head, eye, heart, abdomen/claw, tail, tail-tip, and tail-base regions 
of the Daphnia and their overall length and tail length 

Reliability: Confusion matrix, accuracy, sensitivity, specificity, MCC 

Domain: Not provided 

Availability: https://deepdaph.cloud.nanosolveit.eu/ 

Training 
material: 

Not available 

 

The DeepDaph web application employs a deep learning workflow based on neural networks 

architecture to detect, isolate, analyse, and classify specific areas of interest of Daphnids depicted in 

microscopy images99. In this way, it is possible to spot malformations of the depicted organisms in a 

fast and systematic manner. Users should upload a PNG or JPEG image of Daphnia light microscopy and 

the required meta-data (generation, age in days, NM type of exposure, etc.). When submitted the deep 

learning workflow is executed and the results are presented shortly, including the recognition of seven 

regions of interest (head, eye, heart, abdomen/claw, tail, tail-tip, and tail-base), the overall length and 

tail length of the Daphnia,  and the classification of the heart and the abdomen/claw areas in terms of 

lipid concentration (Figure 74). This application is hosted in the NanoSolveIT cloud platform. 

 

Figure 74: DeepDaph web service interface. [A] Daphnia image and meta-data input. [B] Results of the deep learning workflow. 

Ecotox models  
NMs category: Freshly dispersed and 2-year aged metal and MeOx NMs 

Endpoint: Toxicity to Daphnia Magna 

Reliability: Confusion matrix, accuracy, sensitivity, specificity, MCC 

Domain: Indication along with the prediction 

Availability: https://ecotox.cloud.nanosolveit.eu/ 

Training 
material:  

Written tutorial - https://ecotox.cloud.nanosolveit.eu/instructions.zul   

 

The toxicological effects on Daphnia Magna of freshly dispersed and 2-year aged NMs, can be assessed 

using the NanoSolveIT Cloud Platform ecotox models75. Two different kNN classification models -one 

for each ageing profile- are developed considering Daphnia’s EC40 toxicity values. After choosing the 

https://deepdaph.cloud.nanosolveit.eu/
https://ecotox.cloud.nanosolveit.eu/
https://ecotox.cloud.nanosolveit.eu/instructions.zul
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age profile of the query NMs, the users need to provide the NMs physicochemical and medium-related 

properties either by uploading a CSV file or by filling the online form (Figure 75A). The web service 

generates predictions for the toxicity profile of the input NMs, classifying them as “toxic” or “non-toxic”, 

and an indication of the predictions’ reliability is also presented based on the model’s applicability 

domain. Apart from that, the three neighbours and their distance from each input NM are presented 

(Figure 75B). Output results can be downloaded as a table in CSV format.  

 

Figure 75: [A] Screenshot of the NanoSolveIT web interface of ecotox models for pristine NMs. [B] Results table for each input 
NM including toxicity predictions, their reliability and the neighbours’ space. The interface and the results for the aged NMs 
are similar. 

Enalos QNAR iron oxide toxicity platform 
NMs 
category: 

Iron oxide NPs 

Endpoint: Toxicity class 

Reliability: Confusion matrix, accuracy, sensitivity, specificity, precision 

Domain: Indication along with the prediction 

Availability: http://www.enaloscloud.novamechanics.com/EnalosWebApps/QNAR_IronOxide_Toxicity/ 

Training 
material: 

Written tutorial - http://www.enaloscloud.novamechanics.com/EnalosWebApps/ 
QNAR_IronOxide_Toxicity/instructions.zul YouTube video: https://youtu.be/8Rxo_dhmD34   

 

Due to the growing use of NPs, experimental and computational efforts have been reported for their 

toxicity evaluation. In this course, a fully validated predictive classification tool for iron oxide NPs’ 

http://www.enaloscloud.novamechanics.com/EnalosWebApps/QNAR_IronOxide_Toxicity/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/QNAR_IronOxide_Toxicity/instructions.zul
https://youtu.be/8Rxo_dhmD34
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toxicity is developed on KNIME platform using the J48 modeling methodology and is available online 

via Enalos Cloud Platform65. Through this web service (Figure 76), the user can insert the indicated 

properties (NP size, zeta potential, relaxivities R1 and R2) and choose among three alternative coating 

options (Poly-vinyl-alcohol-PVA, cross-linked dextran or other) for multiple NP entries. Input properties 

can be provided either by filling in the given form or by uploading a CSV file. Afterwards, a toxicity 

prediction is generated, classifying each input NP as “active” or “inactive”, accompanied by an 

indication of its reliability based on the DoA. There is an additional option to download output results 

in different formats (CSV or HTML file). 

 

Figure 76: [A] Screenshot of the iron oxide toxicity web interface. [B] Results table for each input NM including the toxicity 
predictions and their reliability.  

Facet cytotoxicity prediction 
NMs category: MeOx NPs 

Endpoint: Toxicity to BEAS-2B and RAW 264.7 cell lines and E. Coli 

Reliability: Cohen's kappa, accuracy, sensitivity, specificity, MCC 

Domain: Indication along with the prediction 

Availability: https://facetcytotoxicity.cloud.nanosolveit.eu/ 

Training 
material: 

Written tutorial - https://facetcytotoxicity.cloud.nanosolveit.eu/instructions.zul  

 

Risk assessment techniques associated with MeOx NPs are on the rise, due to the immediate need to 

determine NPs as safe to use health-wise or not. The NanoSolveIT facet cytotoxicity ready-to-use web 

https://facetcytotoxicity.cloud.nanosolveit.eu/
https://facetcytotoxicity.cloud.nanosolveit.eu/instructions.zul
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application uses a QSAR model to predict the effect of MeOx NP facets on their toxicity towards 

bronchial epithelial (BEAS-2B), murine myeloid (RAW 264.7) cell lines, and E. coli (Figure 77). 

Specifically, a kNN algorithm is implemented to classify NPs as “toxic” or “non-toxic” based on five 

significant parameters, namely core size, chemical potential, enthalpy of formation, electronegativity 

count (Metal Epsilon) and NP’s core size88.  These properties are used as input data requirements for 

the online tool and users may provide them through the online form or by uploading a CSV file with a 

specific format. Computations are executed and besides NP’s cytotoxicity classification, output results 

contain the neighbouring NPs’ identities and Euclidean distances, along with a warning about the DoA 

of the prediction. 

 

Figure 77: [A] NanoSolveIT facet cytotoxicity predictive model web service. [B] Results table including cytotoxicity class 
predictions, their reliability and the neighbours’ space of the input NMs. 

GUIDEnano 
NMs category: User-defined 

Endpoint: Human and environmental safety assessment (various endpoints) 

Reliability: Not provided 

Domain: Not provided 

Availability: https://tool.guidenano.eu/  

Training 
material:  

YouTube video - https://youtu.be/sKMkr0-p3l0  

 

GUIDEnano is a web-based guidance tool, aiming to develop innovative methodologies to evaluate and 

manage human and environmental health risks of nano-enabled products, thus helping the industry to 

apply risk management strategies for a product of interest. The users are required to create an account 

for access to the tool, allowing them to describe their case study in terms of activities (>200 processes), 

materials (NM properties and other substances), compartments/fate, exposure, and hazard-risk 

assessment, by utilising the tools’ interconnected modules. GUIDEnano includes several predictive 

models, multi-level decision trees and databases, while it simulates a NM’s fate and provides estimates 

in human exposure routes and target environmental scenarios. The release values and occupational 

exposure limits can be either input by the user or derived from the tool from different study templates. 

Finally, the tool returns a risk assessment result after considering the whole product life cycle, and 

indicates the risk level as “high”, “medium”, or “low” (Figure 78). The users can also use the GUIDEnano 

https://tool.guidenano.eu/
https://youtu.be/sKMkr0-p3l0
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tool to simulate how risk predictions may change by introducing different types of risk mitigation 

measures. 

 

Figure 78: Screenshot of GUIDEnano interface.  

INSIdE nano 
NMs category: Metal and MeOx NMs, and MWCNTs 

Endpoint: Assessment of the connections between phenotypic entities based on their effects 
on the genes 

Reliability: Comparison with other independently calculated similarities based on several 
aspects, including the molecular composition of the drugs and chemicals, the 
symptoms of the diseases, the use of drugs in clinical practice, and the pathogenic 
effects of chemical exposures. 

Domain: Not provided 

Availability: http://inano.biobyte.de/  

Training 
material: 

Written tutorial - http://inano.biobyte.de/help.cgi  

 

The INSIdE NANO web tool depicts and highlights connections between phenotypic entities based on 

their effects on genes, for four categories of elements (NMs, drugs, chemicals and diseases)167. The tool 

provides two approaches for the exploitative analysis of the data set: the visualization of the phenotypic 

network and the visualization clustering of the phenotypic entities (Figure 79). For the NMs, the 

network construction is based on an ordered list of genes resulting from differential expression analysis. 

Pairwise similarity is then calculated between all entities and the respective values are used to build a 

weighted undirected network, where the nodes are the entities and the similarity between them 

represents the weight of the edge. Positive and negative correlations between nodes-entities are 

encoded in the colour of the edges. The cluster analysis panel gives the possibility to investigate how 

the four entities are grouped with each other and which genes are most important to each of them. In 

addition, query analysis (simple or conditional) is possible through the tool and allows the users to 

examine connections of a specific element and highlights its position in the ranking of the neighbours, 

it indicates if the connection is known in the literature and specifies the connection distributions.  

http://inano.biobyte.de/
http://inano.biobyte.de/help.cgi
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Figure 79: The INSIdE nano web tool. [A] The network browser tab allows the visualization of interactions between entities 
(NMs, drugs, chemicals, and diseases). [B] The cluster analysis tab allows the investigation of how NMs, drugs, disease and 
chemicals are grouped and of which genes are most important to each of them. 

Logistic regression model for the toxicity classification of SPIONs 
NMs category: SPIONs 

Endpoint: Cell viability of stem cells 

Reliability: Accuracy, precision, recall, F1-score, confusion matrix 

Domain: Assessed but not provided within the tool 

Availability: https://app.jaqpot.org/model/DcWnWFp9GESI16R4o2av (upon request to 
become a member of the BIORIMA organization from 
hsarimv[AT]central[DOT]ntua[DOT]gr) 

Training 
material:  

Not available 

 

A nanoQSAR model is developed for the cell viability of stem cells prediction of SPIONs and released as 

web service through the Jaqpot 5 modelling platform76. The developed logistic regression model 

https://app.jaqpot.org/model/DcWnWFp9GESI16R4o2av
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classifies input SPIONs as “toxic” and “non-toxic” (class 1 and 0 respectively), based on the values of 

two input features: the SPIONs type of core (maghemite or magnetite) and their overall size. Users after 

providing the values of these features to the web service, can acquire the predicted genotoxicity values 

(Figure 80).  

 

Figure 80: [A] Jaqpot logistic regression model for the toxicity classification of SPIONs main interface. [B] Information on the 
necessary input variables and the predicted endpoint. [C] Prediction page where users upload their data in CSV format or via 
the provided online form. [D] Model output.  
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Lung exposure dose calculator 
NMs 
category: 

Black toner, TiO2 and embedded TiO2 NPs (TiO2–Ag, TiO2–Ag2O and TiO2–AgCl) 

Endpoint: NMs lung burden following acute exposure 

Reliability: Comparison to MPPD model results 

Domain: Provided only for the multi-box aerosol method 

Availability: https://lungexposure.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial - https://lungexposure.cloud.nanosolveit.eu/instructions.zul  

 

A biokinetics model for the estimation of acute regional lung-deposited dose of inhaled inorganic 

engineered NPs in humans is provided as a web application through the NanoSolveIT Cloud Platform161. 

The first step for the user is to provide data for the concentration of NPs over time using three 

alternative models for NP diameter distribution (theoretical, template, or from the multi-box aerosol 

model also hosted in NanoSolveIT Cloud). Next, two models can be used for the calculation of the NP 

deposition in the human respiratory system:  the international commission on radiological protection 

model (ICRP) and an advanced ICRP model. Users must provide detailed parameter values for the 

exposed person in case that the advanced ICRP model is selected. The web-service, then, calculates the 

acute doses (in mg) for three regions of the respiratory system (alveolar, tracheobronchial, and head 

airways), which can finally be downloaded in CSV format (Figure 81). 

https://lungexposure.cloud.nanosolveit.eu/
https://lungexposure.cloud.nanosolveit.eu/instructions.zul
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Figure 81: NanoSolveIT lung exposure dose calculator web interface. Users should define the particle size distribution and 
according to the selected model, the calculated acute doses in the alveolar, tracheobronchial and head airways are presented. 

  



 
 

195 
 

Metal oxide nanoparticles cytotoxicity classification 
NMs category: MeOx NPs 

Endpoint: Cytotoxicity class 

Reliability: Accuracy, specificity, sensitivity, MCC, confusion matrix 

Domain: Assessed but not provided within the tool 

Availability: https://cytotoxicity.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial – available through the app 

 

Another web service that provides cytotoxicity predictions for MeOx NPs is made available through 

Jaqpot Services, developed as part of the NanoSolveIT EU programme. A fully validated predictive 

model developed using the random forest classifier based on physicochemical and atomistic properties 

is developed. Users can easily access the service by creating a free Jaqpot account or via Google/GitHub 

accounts. Users should provide the required variable values either by completing the provided form or 

by uploading a CSV file following the provided template file. Results are presented shortly after the 

submission of the input data and include the predicted toxicity class (Figure 82).  

 

Figure 82: NanoSolveIT MeOx cytotoxicity classification interface in Jaqpot. Users provide their data either manually or by 
uploading a CSV file. Predictions are presented at the bottom of the interface. 

  

https://cytotoxicity.cloud.nanosolveit.eu/
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MS³bD zeta potential predictive model 
NMs category: Metal and MeOx NMs 

Endpoint: Zeta potential in water (pH 7) 

Reliability: Coefficient of determination (𝑅2), external explained variance, Golbraikh & 
Tropsha's test 

Domain: Indication along with the prediction 

Availability: http://www.enaloscloud.novamechanics.com/nanocommons/mszeta/ 

Training 
material:  

Not available 

 

NMs’ zeta potential values in water (pH 7 and theoretical ionic strength is 10–6.998 mol/L) are possible 

to be predicted through the Enalos Cloud Platform. A kNN model is developed and validated according 

to OECD guidelines for the prediction of zeta potential, and it can be used in safe-by-design approaches 

for the design of inorganic NMs1. The properties/descriptors used for the model development (NM 

type, type of coating, NM core size, metal ionic radius, absolute electronegativity (χabs), sum of metal 

electronegativity divided by the number of oxygen atoms present in a particular MeOx [Σχ/nO]) are in 

turn the required input data of the online web-service (Figure 83). Data can be provided via the online 

form or by uploading a CSV file. The output results include the zeta potential prediction, the identities, 

and distances of the closest neighbours on which the prediction is based. There is also an indication 

whether the predicted value falls within the model's applicability domain (reliable or unreliable 

prediction), along with the calculated domain value and the model's APD threshold value (calculated 

based on the Euclidean distances approach). 

http://www.enaloscloud.novamechanics.com/nanocommons/mszeta/
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Figure 83: [A] MS3bD zeta potential predictive model web service. [B] Results table including zeta potential predictions, their 
reliability and the neighbours’ space of the input NMs. 

Nano-lazar 
NMs category: Gold NPs 

Endpoint: Cell association in A549 cell line (log2-transformed) 

Reliability: RMSE, MAE, squared Pearson correlation coefficient (𝑟2) 

Domain: Assessed but not provided within the tool 

Availability: https://nano-lazar.in-silico.ch/predict  

Training 
material:  

Not available 

 

This web service hosts three models built under the nano-lazar framework for the prediction of the cell 

association of surface-modified gold NPs to A549 cells. The three models are based on the structural, 

(physicochemical) property and biological (using serum protein interaction data) similarities 

respectively38. After the similarity calculations between the query NM and the dataset NMs, a local 

QSAR model is applied to acquire the prediction of the endpoint. The users should select first the model 

of interest and provide the respective input parameters (query NM properties), by filling the available 

https://nano-lazar.in-silico.ch/predict
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online forms. The results include the predicted log2-transformed cell association value for each query 

NM, and a list of the similar NMs on which the prediction is based (Figure 84).  

 

 

Figure 84: Screenshot of the nano-lazar web interface. [A] Selection of the model and model input parameters. [B] Results 
including predicted endpoint value and similar NMs to the query NM. 

Nano Protein Corona model 
NMs category: Gold NPs 

Endpoint: Cell association in A549 cell line (log2-transformed) 

Reliability: Coefficient of determination (𝑅2), external explained variance, Golbraikh & 
Tropsha's test 

Domain: Indication along with the prediction 

Availability: http://www.enaloscloud.novamechanics.com/nanocommons/NanoProteinCorona/ 

Training 
material:  

Not available 

 

A predictive QNAR model of the biological response of surface-modified gold NPs based on their 

acquired protein corona fingerprint and their physicochemical properties is created and released as a 

web service, to address the needs of fast-alternative screening methods for the safe-by-design of novel 

NPs36. The QNAR model is developed via KNIME platform using the kNN approach, and it is based on a 

set of significant descriptors: three physicochemical descriptors measured in serum (z-average 

hydrodynamic diameter, zeta potential, localised surface plasmon resonance index) and ten protein 

spectral counts. Similarly, in the relevant web service (Figure 85) users -for a set of untested NPs- must 

provide inputs for the aforementioned descriptors through the online form or by uploading a CSV file 

with all the necessary information. The results include the predicted log2-transformed cell association 

value for each query NP, and a warning of whether the prediction can be considered reliable based on 

the applicability domain of the model.  

http://www.enaloscloud.novamechanics.com/nanocommons/NanoProteinCorona/
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Figure 85: [A] Screenshot of the nano protein corona model web interface. [B] Results table for each input NM including 
cellular association predictions and their reliability. 

NanoBio 
NMs category: TiO2, ZnO, CuO NMs 

Endpoint: Long-term bioaccumulation of the NMs in different freshwater species 

Reliability: Comparison of model results to laboratory studies247 

Domain: Not provided 

Availability: https://nanobio.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial – available through the app 

 

The NanoBio web application simulates the biodistribution of metallic NMs (TiO2, ZnO and CuO) in 

freshwater ecosystems (Figure 86). The background biokinetic model has been developed by Garner et 

al.247 and includes seven species: two phytoplankton species (S. capricornutum and F. crotonensis), a 

zooplankton (D. magna), a benthic invertebrate (H. azteca), a bivalve (V. constricta), a planktivorous 

fish (P. promelas) and an upper trophic level fish (O. mykiss). Each organism is modelled as a two-

compartmental model, one for describing the uptake, elimination, and accumulation of NMs and one 

for describing the uptake, elimination and accumulation of dissolved metal ions. By connecting the two 

subcompartments, dissolution inside the organism is also considered. The application comprises two 

modules, the exposure scenario, and the simulation information module. In order to simulate a 

complete biodistribution scenario resulting from an environmental exposure event, users are 

requested to provide an exposure scenario in the form of a CSV file and to tune some simulation 

parameters. The exposure scenario file should include information on the time profile of the NM 

concentration in water, the dissolved ion concentration (in water), the NM concentration attached to 

the suspended sediment and finally the NM concentration that has partitioned to the sediment. The 

simulation parameters consist of the NM of interest (among TiO2, ZnO and CuO) and the simulation 

period (in days). The application produces charts showing the biodistribution of one or more species 

after the simulation is finished. The results can be downloaded in CSV format. 

https://nanobio.cloud.nanosolveit.eu/
https://doi.org/10.1021/acssuschemeng.8b01691
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Figure 86: The NanoSolveIT NanoBio interface in Jaqpot. Users provide their data by uploading a CSV file with the exposure 
scenario and type the simulation parameters. The simulated NM bioaccumulation in different species time profile is presented 
at the bottom of the interface. 
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Nanoinformatics model for zeta potential prediction powered by Enalos Cloud Platform 
NMs 
category: 

Metal and MeOx NMs 

Endpoint: Zeta potential in water (pH 6.5 or 7) 

Reliability: Pearson correlation coefficient (𝑅2), external explained variance, Golbraikh & 
Tropsha's test 

Domain: Indication along with the prediction 

Availability: http://enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/ 

Training 
material:  

Written tutorial - 
http://www.enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/instruc
tions.zul  YouTube video -  https://youtu.be/swPtFTmI1AI  

 

Zeta potential is one significant NM property which influences the NMs tendency to form agglomerates 

and to interact with cell membranes. A fully validated kNN/read-across predictive model is developed 

for the prediction of zeta potential, based on image descriptors which encode geometrical 

characteristics and can be easily retrieved from NMs TEM images (e.g., using an image analysis tool 

such as Enalos NanoXtract or ImageJ)89. Through a web service, the user can insert the indicated 

properties (NM’s core type, experimental solutions’ pH and the NMs main elongation value), which can 

be done either by filling in the given form or by uploading a CSV file (Figure 87A). The produced results 

include the predicted zeta-potential values for each NM entry as well as a warning on the prediction 

reliability according to the DoA limits (Figure 87B). The neighbours of each query NM are also available 

through the web-service, to observe any similarity patterns. 

 

Figure 87: [A] Screenshot of the nanoinformatics zeta potential model web interface. [B] Results table for each input NM 
including zeta potential predictions and their reliability. The neighbours’ space is also provided by downloading the results 
files. 

http://enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/
http://www.enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/instructions.zul
http://www.enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/instructions.zul
https://youtu.be/swPtFTmI1AI
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NanoInhale 
NMs category: TiO2 NMs 

Endpoint: Biodistribution of TiO2 NMs in humans after inhalation 

Reliability: Comparison to the gold standard in the calculation of particle deposition in the 
respiratory system (multiple-path particle dosimetry (MPPD) model) 

Domain: Users are advised to simulate scenarios for TiO2 NMs of diameter close to 22 nm 

Availability: https://nanoinhale.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial – available through the app 

 

The NanoInhale web application was developed for the simulation of TiO2 NMs biodistribution in 

humans after exposure via the inhalation route (Figure 88). The background PBPK model161 was 

developed based on the experimental data of Kreyling et al.248 for TiO2 NMs of 22 nm diameter and was 

subsequently extrapolated to humans. The application consists of two steps: the exposure scenario and 

the simulation information step. Users are requested to upload the TiO2 concentration (in μg/m3) over 

time via a CSV file and to define the simulation parameters (the subject’s weight, the time increment, 

the last time point of the simulation time vector and the size of the TiO2 NMs). After data input, the 

application presents in graphical format the simulated internal biodistribution over time stemming out 

of an occupational exposure scenario. Users can select in the corresponding visualisation box which 

organs/tissues to plot (liver, spleen, kidneys, heart, brain, blood, Rob (Rest of the body; skeleton and 

remaining soft tissues), alveolar region, tracheobronchial region, lung interstitium and capillaries, upper 

respiratory system and, finally, lower respiratory system). It is noted that this tool implements the same 

model as “PBPK models and integration with the occupational exposure model” tool. 

https://nanoinhale.cloud.nanosolveit.eu/
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Figure 88: The NanoSolveIT NanoInhale interface in Jaqpot. Users provide their data by uploading a CSV file with the exposure 
scenario and type the simulation parameters. The simulated TiO2 concentration in different organs time profile is presented 
at the bottom of the interface. 
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NanoMixHamster 
NMs category: TiO2-based multicomponent NMs (TiO2 and Au, Ag, Pt, or Pd) 

Endpoint: Cytotoxicity to CHO-K1 cell line (expressed as pEC50) 

Reliability: Statistics provided in Mikolajczyk et al. 2019100: Adjusted coefficient of 

determination (𝑅adj
2 ), RMSE, external and internal validation coefficient (𝑄Ext

2  and 

𝑄Int
2 ), CCC, and MAE 

Domain: Indication of the domain limits 

Availability: https://nanomixhamster.cloud.nanosolveit.eu/ 

Training 
material: 

Not available 

 

The NanoMixHamster101 is an application for predicting toxicity of TiO2-based multicomponent NMs 

against CHO-K1 cell line (expressed as pEC50) based on SAPNet methodology112. This application is 

hosted in the NanoSolveIT cloud platform and consists of two main steps: the definition of the metallic 

NM composition (TiO2 and Au, Ag, Pt, or Pd) to acquire its additive electronegativity value (Figure 89A), 

and the toxicity prediction step based on the results obtained in previous step (Figure 89B). The 

summary tab (Figure 89C) includes three graphs to help visualize the data used to develop the model 

and its applicability domain. Finally, the dataset generator tab can be used to generate a new dataset 

of theoretical TiO2-based multicomponent NMs with metal clusters of silver, and their mixtures with 

gold, palladium, and platinum. In a next step, it is possible to generate the predictions of the additive 

electronegativity and the cytotoxicity values for all the generated dataset at once.  

 

Figure 89: NanoMixHamster web interface. [A] Step 1, prediction of NM’s additive electronegativity based on the metallic 
system composition. [B] Step 2, prediction of the NM’s toxicity to the CHO-K1 cell line. [C] Observed vs predicted toxicity values 
and applicability domain plots.  

  

https://nanomixhamster.cloud.nanosolveit.eu/


 
 

205 
 

NanoPot 
NMs category: Au NPs 

Endpoint: Cellular uptake capacity in A549 cells, logP and zeta potential in water 

Reliability: 𝑅2 
Domain: Assessed but not provided within the tool 

Availability: https://nanopot.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial – available through the app 

 

Nanopot is a web application hosted in Jaqpot designed to produce predictions for gold spherical NPs 

on three endpoints: the ζ – potential in water, the logP ratio of concentrations of a gold NP in a mixture 

of octanol-saturated water and water-saturated octanol at equilibrium, and the NPs cellular uptake 

capacity in A549 cells. Users to initiate a prediction should provide the spherical gold NPs’ PDB 

representation to the background regression models. The gold NP is automatically visualised in a 3D 

interactive scatter plot, and the prediction of the respective endpoint is also automatically displayed 

(Figure 90).   

 

Figure 90: The NanoSolveIT Nanopot interface in Jaqpot. Users should select one of the three available models and upload the 
PDB file of a spherical gold NP of interest. After file upload, the prediction of the relevant endpoint is automatically presented 
on the interface.  

  

https://nanopot.cloud.nanosolveit.eu/
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NanoProfiler 
NMs category: MeOx NPs and fullerenes 

Endpoint: Various (thermal conductivity, solubility, membrane damage, HIV-1 PR inhibition, 
smooth muscle apoptosis, bacterial reverse mutation, cytotoxicity) 

Reliability: Assessed for the models but not provided within the tool 

Domain: Assessed for the models but not provided within the tool 

Availability: https://sites.google.com/site/dtclabnp/  

Training 
material:  

Written tutorial available when downloading the software 

 

This tool (Figure 91) predicts different properties of NPs using the nanoQSAR models which are included 

in its database and are already reported in the literature. Afterwards it performs clustering to find 

analogues based on the predicted property. In the tool, clustering methods are included for analogues 

identification, namely a k-Medoids algorithm (slow and exhaustive; searches best ‘k’ medoids), a 

modified k-Medoid (fast; searches optimum ‘k’ medoids) and a Euclidean distance-based method199.  

 

Figure 91: NanoProfiler user interface. 

  

https://sites.google.com/site/dtclabnp/
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NanoSafer 
NMs category: Undefined - Manufactured NMs 

Endpoint: Risk Quotient (the ratio of an exposure dose to a human effect threshold) 

Reliability: Not provided 

Domain: Not provided 

Availability: http://www.nanosafer.org/  

Training 
material: 

Written tutorial - http://www.nanosafer.org/Media/Manual.pdf  

 

NanoSafer is a risk assessment and control-banding tool for manufactured NMs or NP-forming 

processes. First, the users must log-in with their password for input data management, such as 

registered materials and processes. Then, for a new input material there are specific data requirements: 

the suppliers technical data sheet and the material safety data sheet. As for a new input process 

registered, required data include the type of process (powder handling or emission), information about 

the work area, the occupational exposure limit (OEL) for respirable dust and the energy level. Moreover, 

in order to make an assessment the users must choose a registered material and process, and a risk 

management report is generated (which can also be downloaded). Lastly, NanoSafer provides the risk 

level and the recommended exposure control for emission management in work scenarios based on 

first order modelling (Figure 92). 

 

Figure 92: Screenshot of NanoSafer risk management recommendation output. 

NanoSerpA 
NMs category: Metal and MeOx NMs, graphene-based materials, fullerenes, (MW)CNTs, carbon 

black 

Endpoint: NMs risk assessment 

Reliability: Comparison to real scenarios reported in Literature 

Domain: Not provided 

Availability: https://www.cyc-ingenieros.com/nanoserpa/ for Android users only 

Training 
material: 

YouTube video - https://youtu.be/62WpDdEcnQs  

 

An application for risk assessment of NMs in the insurance sector was developed200, which estimates 

dispersion of NMs in the environment whenever they are involved in a potentially harmful situation, 

http://www.nanosafer.org/
http://www.nanosafer.org/Media/Manual.pdf
https://www.cyc-ingenieros.com/nanoserpa/
https://youtu.be/62WpDdEcnQs
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such as spills during production, transport, or use of NMs-containing products. NanoSerpA was 

developed by integrating hazard-related data (among others from the eNanoMapper database) and 

optimised exposure models while it uses probabilistic models for emission prediction, health hazard 

values and risk indices. This app, available for download currently only for Android smartphones, is 

particularly useful in the insurance sector since the user can simulate an accident scenario.  Users can 

choose a composite material that contains NMs and provide pictures and information on the accident. 

Then, NanoSerpA returns a report showing the risk for the environment posed by emissions both in 

water, air, and soil, as well as for health, and provides a general risk index. Recommendations on the 

NMs use are provided according to the generated risk index. The report can be downloaded in PDF 

format in a standardised manner. It is also possible to access the nanoSerpA NMs database and filter 

the NMs according to their type and physicochemical characteristics and acquire the relevant 

nanotoxicity information. A terms glossary is also available through the app. The different 

functionalities of the app are depicted in Figure 93. Despite the usefulness of this app, it is available 

only in Spanish, therefore non-Spanish speakers are excluded and cannot profit from the app’s 

functionalities. 
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Figure 93: Screenshots from the nanoSerpA application. [A] Main page of nanoSerpA. [B] NM properties finder. [C] Terms 
glossary. [D] Generation of risk assessment reports, after an exposure scenario definition. 

NanoToxRadar 
NMs category: Metal and MeOx NMs 

Endpoint: Cytotoxicity probability, cytotoxicity benchmark dose, zeta potential 

Reliability: Coefficient of determination, Root Mean Squared Error, Accuracy, Specificity, 
Sensitivity, MCC  

Domain: Assessed but not provided within the tool 

Availability: https://nanotoxradar.kitox.re.kr/  

Training 
material:  

Not available 

 

https://nanotoxradar.kitox.re.kr/
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This tool (Figure 94) allows the use of the size-dependent electron configuration fingerprint (SDEC FP) 

model201 for the prediction of NMs cytotoxicity and zeta potential through a user-friendly interface. 

Users should provide the NM’s core composition, the doping parameters, and coating materials from 

the respective dropdown menus, and the size parameters depending on the NM shape (sphere or rod). 

The application produces the cytotoxicity probability (more than 20% cell death of A549 cells at 

100μg/mL), the cytotoxicity benchmark dose (BMD5), and the zeta potential values, along with an 

indication of the risk according to cytotoxicity (safe, uncertain, warning). The three background models 

are developed using different datasets, nonetheless a prediction can be made for all three endpoints 

without any indication on their reliability (based on the applicability domain of each model).   

 

Figure 94: Screenshot of the NanoToxRadar user interface, configuration, and output windows.  

PBPK models and integration with the occupational exposure model 
NMs category: TiO2 NPs 

Endpoint: NPs biodistribution in different tissues and organs 

Reliability: Comparison to the gold standard in the calculation of particle deposition in the 
respiratory system (multiple-path particle dosimetry (MPPD) model) 

Domain: Not provided 

Availability: https://exposurepbpk.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial - https://exposurepbpk.cloud.nanosolveit.eu/instructions.zul  

https://exposurepbpk.cloud.nanosolveit.eu/
https://exposurepbpk.cloud.nanosolveit.eu/instructions.zul
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A web application using PBPK modelling, aiding in the simulation of NP biodistribution in humans due 

to exposure via the inhalation route, is developed and freely available via NanoSolveIT Cloud 

Platform161. The application consists of two distinct modules for inhalation route exposure to TiO2 NMs, 

an external and an internal model. In both cases the user is requested to input data for calculations 

initiation. External exposure scenarios (Figure 95A) can be defined directly by the user by uploading a 

custom-made exposure scenario according to the provided CSV template, or it can be simulated 

through the Multi-box aerosol model. After the definition of the external exposure model, a 

concentration profile as a function of time is presented. As for the internal exposure module (Figure 

95B), the user must simply give information about the weight of the worker and the exposure duration 

(the last point of the simulation time vector in hours). The mass-time profiles are automatically 

generated according to the PBPK model for various body compartments (heart, spleen, brain, kidneys, 

alveolar, upper and lower respiratory, liver, tracheobronchial, blood, skin, lung interstitium and 

capillaries and, rest of the body). The user can select from the drop-down menu the desired 

compartment and observe the NP deposition in this organ/tissue as a function of time.  

 

Figure 95: [A] Screenshot of the NanoSolveIT PBPK model web interface. The default timeseries template is used as a custom-
made external exposure scenario [B] Simulation results on the liver following a 12-hour exposure. 

Prediction of MNPs uptake in PaCa2 cancer cells through Enalos Cloud Platform 
NMs category: MeOx NMs  

Endpoint: Uptake in PaCa2 cancer cells 

Reliability: Coefficient of determination (𝑅2), external explained variance, Golbraikh & 
Tropsha's test 

Domain: Indication along with the prediction 

Availability: http://enaloscloud.novamechanics.com/EnalosWebApps/QNAR_PaCa2/ 

Training 
material: 

YouTube video: https://youtu.be/SKenRzr1FbI  

 

Along with the use of manufactured NPs, concerns about potential biological effects have also 

increased. In this course, a fully validated PLS regression - based QNAR model is developed for the 

prediction of coated MeOx NPs’ cellular uptake in pancreatic cancer cells (PaCa2)44. More precisely, NPs 

http://enaloscloud.novamechanics.com/EnalosWebApps/QNAR_PaCa2/
https://youtu.be/SKenRzr1FbI
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contain a similar metal core (iron oxide/NH2) with different surface organic modifiers, thus each NP can 

be represented by its modifier. A user-friendly, ready-to-use online tool for toxicity predictions and NPs 

design is available freely via Enalos Cloud Platform (Figure 96). For prediction initiation, the user needs 

to provide structures for the desired compounds which can be achieved either by using the given 

drawing tool to design molecules/chemical structures, by entering the SMILES notations or simply by 

importing an SDF file. When compounds are uploaded, the web-service returns the cellular uptake 

value in logarithmic form (log10 [nanoparticles]/cell pM) for each structure entered, accompanied by a 

reliability prediction according to the model’s DoA. The web service provides the functionality to 

virtually screen a set of compounds of interest based on the validated model, and thus yielding a 

preliminary in silico testing. 

 

 

Figure 96: [A] Screenshot of the prediction of MNPs Uptake in PaCa2 Cancer Cells web interface. Different input options are 
available to provide the compounds (organic coatings of NPs) of interest. [B] The results table for each input compound 
presents the endpoint prediction and its reliability.  

QSAR for nano-mixtures 
NMs category: Binary mixtures of TiO2 NPs and an organic/inorganic chemical 

Endpoint: Immobilization (%) of Daphnia Magna & EC50 of nano-mixtures 

Reliability: Adjusted correlation coefficient (𝑅adj
2 ), RMSE, MAE (for train-test and cross 

validation), Z score 

Domain: Assessed but not provided within the tool 

Availability: https://krictcsrc.shinyapps.io/TiO2_Dmagna/ 

Training 
material:  

Not available 

 

This user-friendly web application (Figure 97) is developed for the predictions of two ecotoxicity 

endpoints: EC50 and immobilization (percentage of non-mobile and dead D. magna compared to the 

control sample of D. magna) exposed to TiO2 based nano-mixtures130. The required model input data 

can be easily provided from the users through menus and sliders. A summary of the input data is 

presented after the tuning of the model parameters. Depending on the selected type of mixture 

descriptors, different models are employed to calculate the ecotoxicity endpoints. Models’ 

performance is presented at the right-hand side of the interface. In both models, the predicted values 

for EC50 or for the immobilization % percentage of the nano-mixture are automatically generated and 

presented along with indication of the ecotoxicity risk level (colour-coded).  

https://krictcsrc.shinyapps.io/TiO2_Dmagna/
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Figure 97: [A] Screenshot of the user interface of the EC50 of nano-mixture model. [B] Screenshot of the Immobilization (%) of 
Daphnia Magna user interface. In both cases, model input is performed at the left-hand side of the interface and predictions 
and an indication of level of risk (colour-based) are presented at the right-hand side of the interface.  

QsarDB models 
NMs category: MeOx NMs 

Endpoint: Cytotoxicity to bacteria Escherichia coli as log(1/EC50) and toxicity to human 
keratinocyte (HaCaT) cell line as log(1/LC50) 

Reliability: Coefficient of determination (𝑅2), RMSE 

Domain: Indication along with the prediction 

Availability: https://qsardb.org/repository/handle/10967/119   
https://qsardb.org/repository/handle/10967/214  

Training 
material:  

Not available 

 

The QSAR DataBank (QsarBD, https://qsardb.org/) is a platform which hosts QSAR data and models 

under the FAIR principles and offers integrated services that allow model analysis and use. In this 

course, two nanoQSAR models for the prediction of MeOx NMs toxicity-related endpoints50,63 are 

accessible through the QsarDB. Stakeholders can access the models and for the query NM provide the 

indicated properties (for each descriptor, a different field is provided). Then the model is executed, and 

predictions are provided, along with an indication of their reliability (based on the DoA) of the models. 

Predictions for similar NMs based on the Euclidean distances between the query NM and training 

samples are also provided. Finally, the stakeholders can download the predictions and the list of similar 

NMs in a standardised format. In Figure 98 a screenshot of the model for the prediction of the NMs 

cytotoxicity to E. coli is presented, but a similar environment is available for the prediction of the toxicity 

to HaCaT cells endpoint. 

https://qsardb.org/repository/handle/10967/119
https://qsardb.org/repository/handle/10967/214
https://qsardb.org/
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Figure 98: QsarDB interface for the prediction of MeOx NMs cytotoxicity to bacteria E. coli (as pEC50).  

Quantitative read-across (Read-Across-v4.1) 
NMs category: General methodology for models’ generation (NMs type based on input data) 

Endpoint: General methodology for models’ generation (endpoint based on input data) 

Reliability: External validation coefficients (𝑄𝐹1
2  and 𝑄𝐹2

2 ), RMSE of prediction and MAE 
Domain: Not provided 

Availability: https://sites.google.com/jadavpuruniversity.in/dtc-lab-
software/home#h.bus7xy9m3cbd  

Training 
material:  

Written tutorial – Available as supplementary file to the stand-alone app 

 

The DTC Lab developed a Quantitative Read Across (q-RASAR) software, that predicts toxicity and 

biological activity of nanomaterials or chemicals, using different similarity-based functions59. The q-

RASAR approach enables easy interpretation and indication of quantitative contributions of important 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.bus7xy9m3cbd
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.bus7xy9m3cbd
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chemical features. Users should provide the software with clean, ready-to-modelling data as training 

and test sets and tune the respective parameters including the similarity thresholds and the number of 

neighbours (Figure 99). Since classification-based metrics calculations are included, the tool can be used 

for classification read-across. The software generates the results as files and provides an evaluation of 

the predictions quality in terms of different validation metrics like 𝑞ext,F1
2 ,  𝑞ext,F2

2 , and RMSEp, if 

experimental data of query compounds are available. Overall, the software is impractical and not that 

user-friendly. Since the software is serially executed through consecutive dialog boxes, if an invalid 

parameter value or the wrong file is introduced, the program terminates, and all procedures must be 

carried out again from zero. An improved interface would allow for simultaneous display of all fields 

and the adjustment of the parameters in the case of a mistake or in case of repetitive execution in a 

sensitivity analysis scheme. 
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Figure 99: Data input and parameters tuning steps using the Read-Across-v4.1. 
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Random forest model for the genotoxicity classification of MWCNTs 
NMs category: MWNCTs 

Endpoint: Genotoxicity (expressed via DNA strand breaks) 

Reliability: Accuracy, precision, sensitivity, specificity, MCC, F1-score, confusion matrix 

Domain: Assessed but not provided within the tool 

Availability: https://app.jaqpot.org/model/THPwkjY80z7yaIFNAYJR (upon request to become a 
member of the BIORIMA organization from hsarimv[AT]central[DOT]ntua[DOT]gr) 

Training 
material:  

Not available 

 

A nanoQSAR model is developed for the genotoxicity (expressed via DNA strand breaks) prediction of 

MWCNTs and released as web service through the Jaqpot 5 modelling platform77. The developed 

random forest model classifies input MWNCTs as “genotoxic” and “non-genotoxic” (class 1 and 0 

respectively), based on the values of three input features: the MWCNTs length, the % percentage of 

carbon purity and the hydrodynamic size of MWCNTs measured in DLS at a dose of 12.5 μg/ml (zeta 

average). Users after providing the values of these features to the web service (either by uploading a 

CSV file according to the provided template or by inserting the values in the provided form), can acquire 

the predicted genotoxicity values (Figure 100).  

https://app.jaqpot.org/model/THPwkjY80z7yaIFNAYJR
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Figure 100: [A] Jaqpot random forest model for the genotoxicity classification of MWCNTs main interface. [B] Information on 
the necessary input variables and the predicted endpoint. [C] Prediction page where users upload their data in CSV format or 
via the provided online form. 

RiskGONE in vitro dosimetry tool 
NMs 
category: 

Metal and MeOx NPs 

Endpoint: Effective NMs concentration 

Reliability: Experimentally validated 

Domain: A cylinder space with constant dimensions of 1.5 mm diameter and 1.0 mm height 

Availability: http://www.enaloscloud.novamechanics.com/riskgone/InVitroDosimetry/  

Training 
material: 

Written tutorial - 
http://www.enaloscloud.novamechanics.com/riskgone/InVitroDosimetry/instructions.zul   

 

A web application was developed for the numerical transport of NMs modelling203, based on a multi-

step in vitro dosimetry methodology (developed by De Loid et al.249,250) For initiating the process, the 

user needs to select one of the nine alternative materials and one of the distribution types on the 

particle parameter section. In case the user wants to define a different NM, he/she must provide a 

density value. After that, the application requires specific solvent parameters, such as density, viscosity, 

and temperature. Simulation parameters must also be provided by the user; suspension column height, 

initial total concentration of material, centrifugation, total time of simulation in hours and time interval 

http://www.enaloscloud.novamechanics.com/riskgone/InVitroDosimetry/
http://www.enaloscloud.novamechanics.com/riskgone/InVitroDosimetry/instructions.zul
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for simulation need to be determined (default values available). Eventually, the web service presents 

three graphs after calculations are completed: position from the top, bottom concentration, and 

deposited fraction as functions of time (output results can be downloaded as an excel file). The web 

application is free, ready-to-use and can be found in the RiskGONE instance of the Enalos Cloud 

Platform (Figure 101).  

 

Figure 101: RiskGONE in vitro dosimetry tool. Users must define the particle, the solvent and the simulation parameters and 
acquire the NMs effective concentration over time.  
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Sbpot model  
NMs category: Undefined 

Endpoint: Toxicity expressed as median (%) DNA strand breaks 

Reliability: 𝑅2, MAE, MSE, RMSE, AIC, k, k' 

Domain: Assessed but not provided within the tool 

Availability: https://sbpot.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial – available through the app 

 

A web service that provides genotoxicity predictions is made available through Jaqpot Services, 

developed as part of the NanoSolveIT EU programme. A fully validated predictive model developed 

using the Extra Trees and AdaBoost regressors is developed, based on NMs’ size, exposure conditions 

(concentration and duration) and the type of the Comet Assay. Users can easily access the service by 

creating a free Jaqpot account or via Google/GitHub accounts. Users should provide the required 

variable values either by completing the provided form or by uploading a CSV file following the provided 

template file. Results are presented shortly after the submission of the input data and include the 

predicted median % percentage of DNA strand breaks (Figure 102).  

 

Figure 102: The NanoSolveIT Sbpot model interface in the Jaqpot platform. Users provide their data either manually or by 
uploading a CSV file. Predictions are presented at the bottom of the interface. 

 

Tool for assessment of human exposure to nanomaterials (multi-box aerosol model) 
NMs category: Carbon black, TiO2, and embedded TiO2 NPs (TiO2–Ag, TiO2–Ag2O and TiO2–AgCl) 

Endpoint: Concentration of the NPs in an indoor environment 

Reliability: Assessed experimentally in the original publication of Jensen et al. 2018251 

Domain: The computational domain is defined by the user 

Availability: https://aerosol.cloud.nanosolveit.eu/ 

Training 
material:  

Written tutorial - https://aerosol.cloud.nanosolveit.eu/instructions.zul  

 

https://sbpot.cloud.nanosolveit.eu/
https://aerosol.cloud.nanosolveit.eu/
https://aerosol.cloud.nanosolveit.eu/instructions.zul
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The multi-box aerosol model is an easy-to-use web application for assessment of human exposure to 

NPs in indoor environments. It estimates the NPs concentration in an indoor environment, e.g., a 

workplace laboratory or office, by dividing the space into smaller areas (near and far from the NPs 

emission source)161. The model is available as a free web service through the NanoSolveIT Cloud 

Platform (Figure 103). The prediction depends on the geometrical characteristics of the room; 

therefore, the computational domain must be defined by the user (geometrical layout of the room, 

Near Field (NF) and Far Field(s) (FF), cuboid or cylindrical). A sketch of the computational domain is 

provided, based on the user entries. After that, in the scenario description section, the user needs to 

define the NPs emission rate either by choosing a specific scenario or directly providing a distributed 

emission rate. Then, simulation inputs such as the modelling time, the time of active source and the 

number of repetitions need to be specified, while a choice to change the physical parameters (density, 

pressure, temperature, friction velocity) is given. The output results of the simulation consist of the 

evolution of the NP concentration in a particular or in all areas for different NP sizes (bins). Results can 

be downloaded in CSV format.  
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Figure 103: Interface of the NanoSolveIT multi-box aerosol model web application. In the presented scenario a 4x4x4 m3 room 
is assumed, divided in two cubic areas: an NF and an FF of 2x2 m3. The source emits black toner particles for 50 s in a period 
of 300 s. The simulation is repeated twice. The user can inspect the distribution in NF and FF areas for each of the NP sizes 
(bins). 
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toxFlow 
NMs 
category: 

General methodology for models’ generation (NMs type based on input data) 

Endpoint: General methodology for models’ generation (endpoint based on input data) 

Reliability: Squared correlation coefficient (𝑅LOO
2 ) 

Domain: Not provided 

Availability: https://toxflow.jaqpot.org/ 

Training 
material:  

Written tutorial - 
https://github.com/DemetraDanae/toxFlow/blob/master/manual%20v.Feb2020.pdf 
YouTube video - https://youtu.be/kGp2PuTiDrg  

 

toxFlow is a web application developed for enrichment analysis of omics data coupled with read-across 

toxicity prediction37. Similarity between NMs is quantified by Euclidean or Manhattan distance or by 

cosine similarity and the neighbours are defined considering the NMs multi-perspective 

characterization using one or two user-defined similarity thresholds based, for example, on 

physicochemical, biological, biokinetics or exposure related features. Users can train different models 

based on datasets of different properties and endpoints using toxFlow. In case that omics data are 

available it is possible to perform gene set variation analysis (Figure 104A) prior to read-across training 

and to include only those genes involved in statistically significant gene sets (variable selection). Data 

is uploaded to toxFlow in CSV format. Users can select the similarity criteria and the respective 

threshold values from the menus and train a read-across model. toxFlow presents the generated 

predictions, the accuracy of the model and the neighbours’ space of each NM (Figure 104B), however 

the filtered variables are not provided to the users. Users can later use the produced model to acquire 

predictions for untested NMs through toxFlow.   

https://toxflow.jaqpot.org/
https://github.com/DemetraDanae/toxFlow/blob/master/manual%20v.Feb2020.pdf
https://youtu.be/kGp2PuTiDrg
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Figure 104: [A] toxFlow application web interface for gene set variation analysis. All parameters involved in the analysis can be 
seen in the left grey area. Results are presented in the right-hand side and include a table with all statistically significant gene 
sets, along with the corresponding heatmap and acyclic graph. [B] toxFlow application web interface for the training of a read-
across model. All parameters involved in the analysis can be tuned from the left grey area. Results are presented in the right-

hand side and include the 𝑅LOO
2  value of the model, the read-across prediction table with all successfully predicted NMs and 

the neighbours’ space for a query NM. 

Vythos 
NMs 
category: 

Gold NPs & MWCNTs 

Endpoint: Cell association in A549 cell line (log2-transformed) & adsorption coefficient (log-
transformed) 

Reliability: Pearson correlation coefficient (𝑅2), external explained variance, MSE, RMSE, MAE, 
explained variance in prediction (LOO) 

Domain: Indication along with the prediction 

Availability: https://vythos.jaqpot.org/ 

Training 
material:  

Written tutorial - https://vythos.jaqpot.org/Help.pdf YouTube video -  
https://youtu.be/gkJuKllb_hI  

 

Vythos is a web-application that hosts two predictive models developed based on datasets derived from 

Literature for the estimation of NM-related endpoints (toxicity or adsorption coefficients). Interested 

https://vythos.jaqpot.org/
https://vythos.jaqpot.org/Help.pdf
https://youtu.be/gkJuKllb_hI
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users can upload for each of the models a set of NMs with known properties (indicated by the 

application) and unknown endpoint value and acquire reliable predictions. Vythos incorporates the 

concepts of grouping, read-across and optimization35. Based on the formulation and the solution of a 

mathematical MILP problem, the method used to build the models, searches over a space of alternative 

grouping hypotheses, in terms of partition feature (group defining property), breakpoints (group limits), 

and selected features in each region and determines the one providing the most accurate read-across 

predictions. One the incorporated models is based on the definition of groups in two dimensions (using 

two partition features). Predictions for untested NMs are produced from region-specific linear models 

depending on the group in which each query NM belongs based on its partition feature value. To 

produce the predictions of the endpoint of interest, users should choose the respective model and 

upload a CSV file with all the values of the necessary variables (indicated in the parameters field). 

Templates are available for each of the models. The application (Figure 105) presents for any input NM 

data the endpoint predictions and their reliability, as well as information about the group in which they 

belong (region ID and interactive graph). 

 

Figure 105: vythos web application interface. Users select the model they want to use and acquire the input NMs predictions, 
their reliability and information on the neighbours’ space. 
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ζ-regression 
NMs category: Metal and MeOx NMs 

Endpoint: Zeta potential in water (pH 7) 

Reliability: 𝑅2 
Domain: Assessed but not provided within the tool 

Availability: https://zetapot.cloud.nanosolveit.eu/  

Training 
material:  

Written tutorial – available through the app 

 

Another web service that provides zeta potential predictions in water for metal and MeOx NPs is made 

available through Jaqpot Services, developed as part of the NanoSolveIT EU programme. A fully 

validated predictive model developed using the XGBoostTree algorithm based on NPs’ physicochemical 

and molecular descriptors is developed. Users can easily access the service by creating a free Jaqpot 

account or via Google/GitHub accounts. Users should provide the required variable values either by 

completing the provided form or by uploading a CSV file following the provided template file. Results 

are presented shortly after the submission of the input data and include the predicted zeta potential 

(Figure 106).  

 

Figure 106: The NanoSolveIT ζ-regression model interface in Jaqpot. Users provide their data either manually or by uploading 
a CSV file. Predictions are presented at the bottom of the interface. 

https://zetapot.cloud.nanosolveit.eu/
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Appendix III – Questionnaire on valid in silico modelling tools and read-

across approaches 
In the next paragraphs the questionnaire prepared and distributed to collect the experts’ opinion is 

presented. Its online form is slightly modified to ensure interactivity with the experts. A short 

introduction (used as cover letter) to inform the experts for the scope of this survey is also presented. 

Preamble/Cover letter 
Dear Colleagues, 

We are conducting a survey on the existing in silico modelling tools and read-across approaches for 

nanomaterials on behalf of the EU Observatory for Nanomaterials (EUON) and the European Chemicals 

Agency (ECHA). The aim is to map the state-of-the-art situation in the field of computational-alternative 

methodologies for the hazard and risk assessment of nanomaterials, including (nano)QSAR and 

grouping/read-across modelling, AOP methodologies, and physics-based and PBPK/PBTK modelling. In 

addition, the study aims at examining what tools are available for the in silico assessment of 

nanomaterials adverse effects and properties estimation.  

The key aim of this survey is to identify the data gaps or missing steps to be applicable for research and 

regulatory purposes and to identify the development needs to further improve this area and make them 

regulatory compliant and usable. 

Therefore, we are sharing this questionnaire, which should not take more than 15 minutes to complete, 

to help us gather the necessary information. This questionnaire is structured in five sections (including 

the personal information section), to assess the developed methodologies, on which data are based, 

how are they disseminated and what are the gaps that should be addressed in the future. If you are 

actively involved in developing models and in silico methodologies for nanomaterials, you will be 

enabled to answer closed ended questions mapping the characteristics of these methods. We would 

appreciate your participation in our study.  

Following participation, if you wish, you can gain early access to the report that we will compile with 

EUON/ECHA. In any case, any information shared with us will be treated, if desired, as confidential and 

will not be published. 

Questionnaire link: https://ec.europa.eu/eusurvey/runner/InSilicoReadAcrossApproaches  

If you don’t wish to fill in the questionnaire and would prefer a live interview, we would be happy to 

arrange this with you. Please mail us at surveys@novamechanics.com.  

We would like to thank you in advance for your cooperation and active participation in completing this 

exercise. 

Antreas Afantitis, PhD, MBA 
Managing Director  
e-mail: afantitis@novamechanics.com  
NovaMechanics Ltd 
Cheminformatics & Nanoinformatics Excellence  
Digeni Akrita 51, 1070, Nicosia, Cyprus  
Correspondance Address:  P.O Box 26014, Nicosia, 1666, Cyprus  
http://www.novamechanics.com 
 

https://ec.europa.eu/eusurvey/runner/InSilicoReadAcrossApproaches
mailto:surveys@novamechanics.com
mailto:afantitis@novamechanics.com
http://www.novamechanics.com/
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Section 1 – Personal information 
• *Namel 

• *Affiliation 

• Position  

• *e-mail 

• Are you part of an EU, national or international project? (Yes, No) 

o If yes, in which project are you participating? 

Section 2 – In silico, grouping, and read-across methodologies 
• Are you aware of existing grouping and read-across frameworks?  

o If yes, can you tell us about the frameworks you are aware of? 

• Have you used any in silico method or tool for research or regulatory purposes? 

o If yes, can you, please, explain in which context you have used them? 

• Are you developing or involved in developing models and in silico methodologies for 

nanomaterials?m 

o If yes, can you, please, tell us the models and in silico methodologies you have 

developed or have been involved with developing? 

o Which type of methodologies (e.g., nanoQSARs, grouping/read-across, PBPK models, 

AOPs, physics-based, etc.) are you employing for the developed of in silico approaches? 

o Are the developed in silico methodologies dataset-dependent? 

o What are the standard validation methodologies you employ for the developed in silico 

methods? 

o Which are the metrics used in model validation? 

o How do you ensure the reliability of the predictions of the developed methodologies? 

o How is the assessment of the applicability domain of the developed methodologies 

being performed? 

o How is model interpretation performed? 

o Do you include model documentation using a specific template (e.g., QMRF, MODA) 

when releasing an in silico model? 

• Are the developed in silico methodologies dataset-dependent? 

• *Should any provided information be treated as confidential? 

Section 3 – Data availability 
• In your opinion, are they any barriers in the data availability in nanoinformatics? 

o If yes, which are the current availability barriers? 

• Do you believe that datasets of sufficient quality exist for developing in silico methodologies? 

o If yes, is it easy to access such datasets (e.g., publicly available)? 

▪ If no, what are the accessibility bottlenecks?  

• Are you developing or involved in developing models and in silico methodologies for 

nanomaterials? 

o If yes, which are your main sources of data? 

 
l Fields marked with * are mandatory. 
m This question is repeated through the questionnaire (marked in grey colour). However, in its’ online version it 
will be presented once. More specifically, an interactive scheme is implemented: each expert answers once in the 
question of "developing new in silico methodologies" in section 2 and the depended sub-questions (marked with 
different bullet-format) in sections 2,3 and 4 are presented accordingly. 
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o Do you include data quality control as a standard procedure prior to any modelling 

activities? 

▪ If yes, what data quality procedures do you follow? 

o Do you prefer to use data from sources compliant with the FAIR and Open Data 

guidelines over other sources of data (FAIR/Open Data/I don’t have a preference)? 

o Are there any preferences in the type of properties used for modelling purposes? (e.g., 

physicochemical, in vitro, in vivo, atomistic, molecular, period table, image properties, 

etc.) 

o In your opinion, should data collation from different sources be performed in case of 

data scarcity? 

o What are the data collation barriers? 

• *Should any provided information be treated as confidential? 

Section 4 – Dissemination  
• In your opinion is the dissemination of the developed in silico methodologies as user-friendly 

workflows necessary to support the regulatory applications and the SbD of novel 

nanomaterials? 

• Are you developing or involved in developing models and in silico methodologies for 

nanomaterials?  

o If yes, how do you make your methodologies available to potential stakeholders (e.g., 

as web-tool, stand-alone software, etc.)? 

o Is there a licensing system for using your tools? 

o Are you models freely available or is there a fee for using? (Free/Freeware/One-time 

free/Subscription) 

o Are you providing the source code of the tools you are developing? 

o Do you provide APIs for remote accessing of the in silico tools?  

• Are you aware of any in silico methodologies integrated in industrial, regulatory or research 

level for the SbD, grouping, and read-across of nanomaterials? 

o If yes, which in silico methodologies do you know that are integrated in industrial, 

regulatory or research level for the SbD, grouping, and read-across of nanomaterials? 

• What is the confidence of relevant stakeholders regarding the reliability of the developed 

models and in silico methodologies? 

• *Should any provided information be treated as confidential? 

Section 5 – Gaps and future steps  
• In your opinion, which are the current gaps in the in silico investigation of nanomaterials? 

• Is it possible to integrate the results of the in silico methodologies in the SbD of novel 

nanomaterials or regulatory applications? 

• Can in silico methodologies used for bulk chemicals be used in the case of nanomaterials? (Yes/ 

No/With modifications) 

o If yes, which bulk chemical methodologies can be used for nanomaterials? 

o If “with modifications”, which bulk chemical methodologies can be used for 
nanomaterials? What are the required modifications? 

• What are the difficulties in the integration of the results of the in silico methodologies in the 

SbD of novel nanomaterials or regulatory applications? 

• How do you think it would be possible to reinforce the confidence of the stakeholders in 

reliability of modelled results and in silico methodologies? 

• Which are the key parameters future in silico investigation of nanomaterials should focus (on)? 
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• Would you like to share any other thought/comment regarding the development and use of in 

silico methodologies for nanomaterials? 

• Would you be interested to give us a personal perspective regarding in silico method 

development and application of nanomaterials?  

o If yes, can we contact you for further discussion? 

• *Should any provided information be treated as confidential? 
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Appendix IV – Graphs with the responses to the questionnaire 
The responses from the closed questions of the questionnaire are presented in graphical format.  

Section 1 – Personal information 

 

Figure 107: Are you part of an EU, national, or international research project? 

 

Figure 108: Experts’ affiliated sector. 
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Section 2 – In silico, grouping, and read-across methodologies 

 

Figure 109: Are you aware of existing grouping and read-across frameworks? 

 

Figure 110: Have you used any in silico method or tool for research or regulatory purposes? 
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Figure 111: Are you developing or involved in developing models and in silico methodologies for nanomaterials? 

 

 

Figure 112: Are the developed in silico methodologies dataset-dependent? 
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Figure 113: †Do you include model documentation using a specific template (e.g., QMRF, MODA) when releasing an in silico 
model? Graphs starting with “†” symbol present only the answers of the experts who are developing or involved in developing 
models and in silico methodologies for NMs. 

Section 3 – Data availability 

 

Figure 114: In your opinion, are they any barriers in the data availability in nanoinformatics? 
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Figure 115: Do you believe that datasets of sufficient quality exist for developing in silico methodologies? 

 
Figure 116: Is it easy to access such datasets (e.g., publicly available)? This graph presents the answers of the experts that 
believe that datasets of sufficient quality exist for developing in silico methodologies. 
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Figure 117: †Do you include data quality control as a standard procedure prior to any modelling activities? 

 

Figure 118: †Do you prefer to use data from sources compliant with the FAIR and/or Open Data guidelines over other sources 
of data? 
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Figure 119: †In your opinion, should data collation from different sources be performed in case of data scarcity? 

 

Section 4 – Dissemination  

 

Figure 120: In your opinion is the dissemination of the developed in silico methodologies as user-friendly workflows necessary 
to support the regulatory applications and the SbD of novel nanomaterials? 
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Figure 121: †Is there a licensing system for using your tools? 

 

Figure 122: †Are you models freely available or is there a fee for using? 
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Figure 123: †Are you providing the source code of the tools you are developing? 

 

Figure 124: †Do you provide APIs for remote accessing of the in silico tools? 
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Figure 125: Are you aware of any in silico methodologies integrated in industrial, regulatory or research level for the SbD, 
grouping, and read-across of nanomaterials? 

 

Section 5 – Gaps and future steps  

 

Figure 126: Is it possible to integrate the results of the in silico methodologies in the SbD of novel nanomaterials or regulatory 
applications? 
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Figure 127: Can in silico methodologies used for bulk chemicals be used in the case of nanomaterials? 
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Appendix V – QMRF report for the EnaloskNN model (Case study 1) 

 

QMRF identifier (JRC Inventory): To be entered by JRC.  
QMRF Title: Read-across model for the assessment of interactions between 
carbon nanoparticles and a SARS-CoV-2 RNA fragment.  
Printing Date:26-Jan-2023  
 

1.QSAR identifier  

1.1. QSAR identifier (title):  
Read-across model for the assessment of interactions between carbon nanoparticles and a SARS-CoV-

2 RNA fragment.  

1.2. Other related models:  

1.3. Software coding the model: KNIME 

2.General information  

2.1. Date of QMRF:  
13/01/2023  

2.2. QMRF author(s) and contact details:  

2.3. Date of QMRF update(s):  

2.4. QMRF update(s):  

2.5. Model developer(s) and contact details:  

2.6. Date of model development and/or publication:  
Model Developed on 20/11/2022.  

2.7. Reference(s) to main scientific papers and/or software package:  

2.8. Availability of information about the model:  

2.9. Availability of another QMRF for exactly the same model:  

3.Defining the endpoint - OECD Principle 1  

3.1. Species:  
Different types of carbon-based nanoparticles  

3.2. Endpoint:  
Total Potential Energy (Interaction energies, Eint)   

3.3. Comment on endpoint:  
The endpoint has numerical values originally derived via Molecular Dynamics Simulations. The obtained 

energies had negative values, a reflection of favourable interactions, indicating that CNPs form 

stable complexes with the RNA fragment.  

3.4. Endpoint units:  
kJ/mol  

3.5. Dependent variable:  
Interaction energy (Eint) 

3.6. Experimental protocol:  
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3.7. Endpoint data quality and variability:  

4.Defining the algorithm - OECD Principle 2 

4.1. Type of model:  
Machine learning regression model, k-Nearest Neighbours used within the read-across framework. 

4.2. Explicit algorithm:  
k-Nearest Neighbours algorithm  

k=3, inverted distance as weighting factor for the k nearest points  

4.3. Descriptors in the model:  
[1] Molecular Weight g/mol  

[2] Overall Surface Area (nm2)  

[3] Specific Surface Area (nm3)  

[4] Sum of Degrees dimensionless Topological, SDeg of every carbon atom  

[5] Structure Categorical, C-type family each NP belongs to  

4.4. Descriptor selection:  
Feature selection according to the correlation between all pairs of variables, Spearman's rank 

correlation coefficient was used to assess the strength and direction of the relationships. Threshold 

value of 90% correlation filtered out the “Volume” descriptor of the original dataset from further 

analysis.  

4.5. Algorithm and descriptor generation:  
Descriptors in the original publication were obtained via molecular dynamics simulations, and from the 

Multiwfn 3.8 and the Chem3D Ultra (Ver. 19.0) software. 

4.6. Software name and version for descriptor generation:  

4.7. Chemicals/Descriptors ratio:  

17:5  

5.Defining the applicability domain - OECD Principle 3 

5.1. Description of the applicability domain of the model:  

The applicability domain is defined by fixed boundaries (APD threshold), calculated by considering 
Euclidean distances between all CNPs in the training set.  

5.2. Method used to assess the applicability domain:  
The distance of a test NP to its nearest neighbour in the training set is compared to the predefined 

applicability domain threshold (APD), calculated as APD="d'+'stdev'*z. First, the average of Euclidean 

distances between all pairs of training compounds is calculated and then the set of distances that were 

lower than the average is formulated. 'd' and 'stdev' are finally calculated as the average and standard 

deviation of all distances included in this (remaining) set. (z=0.5, empirical parameter). If the similarity 

is beyond this threshold, the prediction is considered unreliable.  

5.3. Software name and version for applicability domain assessment:  
Domain-APD, Enalos+ node  

Enalos+ extension in KNIME analytics platform 

  

5.4. Limits of applicability:  
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APD threshold=1.963  

6.Internal validation - OECD Principle 4  

6.1.Availability of the training set:  
Yes  

6.2.Available information for the training set:  
CAS RN: No  

Chemical Name: Yes  

Smiles: No  

Formula: Yes  

INChI: No  

MOL file: No  

6.3. Data for each descriptor variable for the training set: All  

6.4. Data for the dependent variable for the training set:  All  

6.5. Other information about the training set:  
CNPs belong to three C-type families (fullerenes, carbon nanotubes, and graphene sheets), Kennard-

Stone algorithm used for partitioning, 12 out of 17 CNPs were included in the training set which was 

used for model development.  

6.6. Pre-processing of data before modelling:  
Gaussian normalisation of descriptors (z-score)  

6.7. Statistics for goodness-of-fit:  
Squared correlation coefficient (𝑟2), Mean absolute error (MAE), Root mean square error (RMSE)  

6.9. Robustness - Statistics obtained by leave-many-out cross-validation:  

6.10.Robustness - Statistics obtained by Y-scrambling:  

 
6.11. Robustness - Statistics obtained by bootstrap:  

6.12. Robustness - Statistics obtained by other methods:  
Golbraikh and Tropsha's test, the model satisfies all their conditions.  

7.External validation - OECD Principle 4 

7.1. Availability of the external validation set:  
Yes  

7.2. Available information for the external validation set:  

CAS RN: No  

Chemical Name: Yes  

Smiles: No  

Formula: Yes  
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INChI: No  

MOL file: No  

7.3. Data for each descriptor variable for the external validation set: 
All  

7.4. Data for the dependent variable for the external validation set: 
All  

7.5. Other information about the external validation set:  
5 out of 17 CNPs were included in the test set. The test set was not involved in model development, it 

was used solely for validating purposes.  

7.6. Experimental design of test set:  
The initial dataset was split into 70:30 ratio for training and test subsets respectively using the Kennard-

Stone algorithm. 

7.7. Predictivity - Statistics obtained by external validation: Squared correlation coefficient (𝑟2)= 
95%, Mean absolute error (MAE)=15.4, Root mean square error (RMSE)=20.4  

7.8. Predictivity - Assessment of the external validation set:  
The external validation set is 30% of the initial dataset and all predictions fall within the DoA. 

7.9. Comments on the external validation of the model:  
Gaussian normalisation on descriptors was applied based on the training set. 

8.Providing a mechanistic interpretation - OECD Principle 5 
8.1. Mechanistic basis of the model:  
Molecular weight characterises the molecule’s size, CNP Structure was considered since the interaction 

affinity with the cov-RNA fragment increases in the order of fullerenes < graphene sheets < C-

nanotubes. SDeg is a topological descriptor represents the total number of vertex degrees of non-

hydrogen atoms connected to every atom of the CNP. Also, CNPs have high surface areas which allows 

good adsorption and desorption behaviour; therefore, surface descriptors (OSA and SSA) were included 

(The larger the surface area of the nanomaterial, the greater the number of adsorption sites available 

for a molecule to bind to). In the original publication, each CNP's “Volume” was used for obtaining their 

surface area values, which explains the descriptor's high correlation with other variables and its 

exclusion from the dataset.  

8.2. A priori or a posteriori mechanistic interpretation:  
Posteriori-After modelling, by interpretation of the final set of descriptors  

8.3. Other information about the mechanistic interpretation:  

9.Miscellaneous information 

9.1. Comments:  
The original publication was “Probing nano-QSAR to assess the interactions between carbon 

nanoparticles and a SARS-CoV-2 RNA fragment”, by Zhang et al. (2021). In this publication three 

separate models were developed for the prediction of Eint, our model had a slightly better performance 

compared to them.  

9.2. Bibliography:  
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[1] Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA 

fragment https://doi.org/10.1016/j.ecoenv.2021.112357.  

9.3. Supporting information:  

Training set(s)Test set(s)Supporting information  

10.Summary (JRC QSAR Model Database) 

10.1. QMRF number:  
To be entered by JRC  

10.2. Publication date:  
To be entered by JRC  

10.3. Keywords:  
To be entered by JRC  

10.4. Comments:  
To be entered by JRC  

  

https://doi.org/10.1016/j.ecoenv.2021.112357
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Appendix VI – Quantitative measures of goodness-of-fit and 

predictivity for regression models 
Most of the statistical metrics presented here are also included in Table 5. 

Correlation of determination (R2) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1

  [1] 

Where 𝑁, is the number of samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ  

sample respectively, and �̅� and 𝑦�̅̂�, are the average endpoint values of the experimental and predicted 

values respectively. 

External explained variance (Q2
ext or Q2

F1) 

𝑄ext
2  𝑜𝑟 𝑄F1

2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦train̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

  [6] 

𝑄F2
2 = 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦test̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1

  [7] 

Where 𝑁, is the number of test samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the 

𝑖𝑡ℎ test sample respectively. 𝑦train̅̅ ̅̅ ̅̅ ̅ and 𝑦test̅̅ ̅̅ ̅̅  are the average actual activities of training set and test set 

samples respectively. 

Mean absolute error (MAE) 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1

  [3] 

Where 𝑁, is the number of samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ 

sample respectively. 

Mean square error (MSE) 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

  [4] 

Where 𝑁, is the number of samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ 

sample respectively. 

Root mean square error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

  [5] 

Where 𝑁, is the number of samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ 

sample respectively. 
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Squared Pearson correlation coefficient (r2) 

𝑟2 =

(

 
∑ (𝑦𝑖 − �̅�)(𝑦�̂� − 𝑦�̅̂�)
𝑁
𝑖=1

√∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1 ∑ (𝑦�̂� − 𝑦�̅̂�)
2𝑁

𝑖=1 )

 

2

  [10]    

Where 𝑁, is the number of samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ  

sample respectively, and �̅� and 𝑦�̅̂�, are the average endpoint values of the experimental and predicted 

values respectively. 

Golbraikh and Tropsha’s test 
A series of statistical criteria that an acceptable regression QSAR model should satisfy according to 

Golbraikh and Tropsha252. 

Statistic Rule 

𝒓𝟐 > 0.6 

𝑸𝐞𝐱𝐭
𝟐  > 0.5 

𝒓𝟐 − 𝑹𝟎
𝟐

𝒓𝟐
 𝐨𝐫 

𝒓𝟐 −𝑹𝟎
′𝟐

𝒓𝟐
 < 0.1 

𝒌 𝐨𝐫 𝒌′ ∈ [0.85, 1.15] 

|𝑹𝟎
𝟐 − 𝑹𝟎

′𝟐| < 0.3 

 

Where: 

𝑘 =
∑ 𝑦𝑖𝑦�̂�
𝑁
𝑖=1

∑ 𝑦�̂�
2 𝑁

𝑖=1

  [23] 

𝑘′ =
∑ 𝑦𝑖𝑦�̂�
𝑁
𝑖=1

∑ 𝑦𝑖
2 𝑁

𝑖=1

 [24] 

𝑅0
2 = 1 −

∑ (𝑦�̂� − 𝑦�̂�
𝑟0)2𝑁

𝑖=1

∑ (𝑦�̂� − 𝑦�̅̂�)
2𝑁

𝑖=1

, where 𝑦�̂�
𝑟0 = 𝑘′𝑦 [25] 

𝑅0
′2 = 1 −

∑ (𝑦𝑖 − 𝑦𝑖
𝑟0)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1

, where 𝑦𝑖
𝑟0 = 𝑘�̂�  [26] 

Where 𝑁, is the number of samples, 𝑦𝑖  and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ   

sample respectively, and �̅� and 𝑦�̅̂�, are the average endpoint values of the experimental and predicted 

values respectively. 

 

 


